手机qq音乐服务器无响应,周杰伦新歌致平台宕机,QQ音乐为什么崩溃?

周杰伦新单曲《说好不哭》上线,引发大量粉丝涌入QQ音乐平台,导致服务器崩溃。尽管腾讯拥有处理大规模流量的经验,但QQ音乐的用户基数和集中访问情况不同于QQ和微信,因此瞬间的高流量超出其服务器承载能力。新歌上线不久,销售额已破千万,相关话题在热搜榜居首。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原标题:周杰伦新歌致平台宕机,QQ音乐为什么崩溃?

9月17日消息,昨日 23 点,各大社交媒体平台都被周杰伦新单曲《说好不哭》刷屏,而作为独家上线该专辑的音乐平台 QQ 音乐,在专辑上线后,服务器一度出现崩溃状态,有网友表示在使用 QQ 音乐时出现故障提示 “发生错误了,点击屏幕重新尝试”。

2a5ec9624d5c58aad81daa515ee545cb.png

就在刚刚,QQ官方微博公布《说好不哭》在QQ音乐数字专辑销售额,目前已经突破10,000,000元,而微博上“周杰伦新歌说好不哭” 的话题则排在热搜榜第一。

6e820788f3e3630e5a294a008b2ffb12.png

QQ音乐服务器为什么会崩溃?

一首新曲上线,QQ音乐崩溃,很多网友质疑,作为全球知名的通讯巨头,腾讯在应对流量冲击方面都有非常丰富的经验,QQ、微信等数十亿用户量的APP都能正常服务,为什么一首单曲上线却能让 QQ 音乐崩溃?

2e8feb198c66f0c123dbaec51d44f110.png

其实、腾讯并不是不能应对流量冲击,而是 QQ 音乐的使用人群本身就没有QQ和微信那么多,大家平时使用也不会集中在同一时间,因此不需要提供太多的服务器。

昨天出现崩溃的状态,其实是因为服务器在瞬间受到巨大的流量冲击出现超负荷,对于QQ音乐来说,这种超负荷的流量冲击其实相对比较少见,因此QQ音乐只提供能够满足平时使用的服务器资源。

昨天出现的服务器崩溃,仅仅是因为服务器所能承受的流量超过了平时,因此超负荷了。返回搜狐,查看更多

责任编辑:

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
### 使用Python爬虫抓取QQ音乐网站上周杰伦的歌曲信息 为了实现这一目标,可以采用`requests`库配合`BeautifulSoup`解析网页内容。然而,由于现代Web应用广泛使用JavaScript动态加载数据,直接通过简单的HTTP GET请求可能无法获得所需的数据。对于这种情况,通常有两种解决方案: #### 方案一:分析AJAX请求并模拟发送 许多网站在前端展示的内容实际上是通过向服务器发出额外的API调用来获取的。这些API往往返回JSON格式的数据,可以直接用于提取有用信息而无需处理HTML文档。 针对QQ音乐的情况,在浏览器开发者工具中查看网络活动可以帮助找到实际查询歌曲列表所使用的接口地址及其参数设置方式[^1]。一旦确定了具体的URL模式以及必要的查询字符串参数(如页码、关键词等),就可以利用`requests`构建相应的GET请求来取得每一页的结果集,并从中解析出感兴趣的字段,比如歌曲名称、专辑封面链接等等。 ```python import json import requests def fetch_songs(page_num): url = "https://c.y.qq.com/soso/fcgi-bin/client_search_cp" params = { 'ct': '24', 'qqmusic_ver': '1298', 'new_json': '1', 'remoteplace': 'sizer.yqq.song_next', 'searchid': '64405487069162918', 't': '0', 'aggr': '1', 'cr': '1', 'catZhida': '1', 'lossless': '0', 'flag_qc': '0', 'p': str(page_num), 'n': '20', # Number of songs per page 'w': '%E5%91%A8%E6%9D%B0%E4%BC%A6', # URL-encoded search term (Jay Chou) 'g_tk_new_20200303': '5381', 'g_tk': '5381', 'loginUin': '0', 'hostUin': '0', 'format': 'json', 'inCharset': 'utf8', 'outCharset': 'utf-8', 'notice': '0', 'platform': 'yqq.json', 'needNewCode': '0' } response = requests.get(url=url, headers={'Referer': 'https://y.qq.com/'}, params=params) if response.status_code != 200: raise Exception(f"Failed to retrieve data with status code {response.status_code}") result = json.loads(response.content.decode()) song_list = [] try: for item in result["data"]["song"]["list"]: title = item["name"] album_name = item["album"]["name"] singer_names = ",".join([singer["name"] for singer in item["singer"]]) song_info = {"title": title, "albumName": album_name, "artistNames": singer_names} song_list.append(song_info) return song_list except KeyError as e: print("Error parsing JSON:", e) for i in range(1, 11): # Fetch first ten pages songs_on_page_i = fetch_songs(i) for song in songs_on_page_i: print(json.dumps(song)) ``` 此脚本定义了一个名为`fetch_songs()`的功能函数,该函数接受一个整数类型的参数表示要访问的具体页面编号;接着设置了包含必要查询项在内的字典对象作为GET方法中的参数传递给指定的目标站点;最后对响应体内的结构化数据进行了适当转换以便于后续操作。 请注意,上述代码片段仅适用于说明目的,具体实施时还需要考虑更多细节问题,例如错误处理机制的设计、反爬策略规避措施的应用等方面。 #### 方案二:借助自动化测试框架Selenium 如果遇到某些情况下难以定位到确切的API端点或者对方采取了一定程度上的防护手段使得常规手段失效,则可转而运用像Selenium这样的工具来进行交互式的浏览行为仿真。这种方式虽然效率较低且资源消耗较大,但在面对复杂场景时却能提供更高的灵活性和成功率。 安装依赖包之后,可以通过下面这段示范性的代码完成相似的任务: ```python from selenium import webdriver from time import sleep driver_path = '/path/to/chromedriver' # Replace this path according to your environment setup. options = webdriver.ChromeOptions() prefs = {'profile.managed_default_content_settings.images': 2} # Disable image loading to speed up the process options.add_experimental_option('prefs', prefs) browser = webdriver.Chrome(executable_path=driver_path, options=options) try: base_url = f"https://y.qq.com/n/ryqq/search?page={i}&query=%E5%91%A8%E6%9D%B0%E4%BC%A6&type=song" browser.get(base_url.format(i)) while True: soup = BeautifulSoup(browser.page_source, features="lxml") tracks = [] track_elements = soup.select('.result__item') for element in track_elements[:len(track_elements)]: name = element.h4.a.string.strip().replace('\n', '') artist = ''.join(element.span.stripped_strings).strip() tracks.append({ 'trackTitle': name, 'artists': artist }) for t in tracks: print(t) next_button = browser.find_element_by_css_selector(".btn-next") if not ('disabled' in next_button.get_attribute('class')): next_button.click() sleep(2) # Wait until new content loads completely before continuing else: break finally: browser.quit() # Ensure that WebDriver instance is closed properly even when an exception occurs during execution. ``` 这里选择了ChromeDriver作为驱动器实例化了一个WebDriver对象,并配置了一些选项以优化性能表现。随后进入循环迭代过程直至遍历完所有的分页记录为止。每次读取当前视图下的DOM树节点集合后即刻执行下一步动作直到找不到可用的“下一页”按钮位置才停止整个流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值