spark python 开发环境_pyspark学习笔记: 一些环境配置问题

本文详细介绍了如何配置Pyspark开发环境,包括设置SPARK_DIST_CLASSPATH以连接HDFS,修改环境变量如JAVA_HOME、HADOOP_HOME、SPARK_HOME和PYTHONPATH,解决Python版本不一致的问题,以及在PyCharm和Jupyter中使用Pyspark的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用pyspark一些环境配置问题

基本配置

cd /usr/local/spark

cp ./conf/spark-env.sh.template ./conf/spark-env.sh

编辑spark-env.sh文件(vim ./conf/spark-env.sh),在第一行添加以下配置信息:

export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)

有了上面的配置信息以后,Spark就可以把数据存储到Hadoop分布式文件系统HDFS中,也可以从HDFS中读取数据。

如果没有配置上面信息,Spark就只能读写本地数据,无法读写HDFS数据。

然后通过如下命令,修改环境变量

vim ~/.bashrc

在.bashrc文件中添加如下内容

export JAVA_HOME=/usr/lib/jvm/default-java

export HADOOP_HOME=/usr/local/hadoop

export SPARK_HOME=/usr/local/spark

export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/lib/py4j-0.10.4-src.zip:$PYTHONPATH

export PYSPARK_PYTHON=python3

export PATH=$HADOOP_HOME/bin:$SPARK_HOME/bin:$PATH

PYTHONPATH环境变量主要是为了在Python3中引入pyspark库,PYSPARK_PYTHON变量主要是设置pyspark运行的python版本。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值