python 爬虫性能_Python爬虫系列4-优化普通数据下载性能的速度

序言

很多人在学习爬虫的时候,总是参照着书本中的内容或者是从网上学习的案例,但是那些案例你会,别人也会 ,如此怎么能提高我们的市场竞争力呢?Tony老师不服,于是,此篇文章顺利诞生;也是想让大家在学习的过程中真正的 学以致用 。

众所周知目前的互联网行业发展非常的激烈,在这个充满斗争的行业里,如果你想独树一帜,你想真正的在这里面有所作为,就必须得去折腾、去学习;而且是高效率的学习; 因为机会一定都是留给有准备的人的,但并不是说你想抓住就能抓的住的。需要我们付出很多精力和时间。

所以我们就需要不断提醒和逼迫自己去进步。因为过一个平凡无趣的人生实在太容易了,你可以不读书,不运动,不折腾。但是,人生最后悔的事情就是:我本可以。 💪

今天要抓取的目标是一个具有APP端的美图网站,为了方便大家的阅读及理解;整个代码的业务逻辑步骤我都已做了二次封装。

爬虫流程三部曲:

第一步:请求网络,获取服务器返回数据

第二步:处理数据,对获取到的数据进行解析,提取数据

第三步:将解析的内容进行存储

当我们确定好要抓取的网站目标时,按照传统方式大家也许直接就开始根据URL抓取数据下方数据了,但是今天咱们来玩儿点不一样的;

image

这里我在多次对网站测试的时候,发现本网站的数据是流动性的,什么意思呢?就是做了局部刷新的操作,会根据用户不断向下浏览的情况,不断的多次加载数据;当滑动至底端的时候,加载刷新了5次数据;这里引起了我的好奇。

image

通过访问url,发现获取的是网站的原数据,它以json类型而存在

image

整理一下,发现其中几个字段很重要,以及图片的url也都在其中,如此,我就有了一个想法,既然数据是根据每一次的下滑而加载的,是不是我可以把url给动态的修改一下,当然这块属于前端知识,大家只需要知道可以这么做就行。事实证明是可以的。完全避开了大家通过selenium控制浏览器下滑刷新的办法。

image

首先这里我对url做了一次优化,我们发现,结构变了;

ps:因为数据太多就不展示了,有心的同学,可以尝试一下,不仅如此,我们发现网站的数据也更加有条理性,更加的清晰;给我的感觉也舒服了好多;

哈哈!可能是因为强迫症原因。。。不否认所有的程序员都有强迫症哈 😅

image

不过这样一来新的问题出现了;

我们所看到的网站url链接中是有中文存在的,那如果我直接填写一个中文可以吗?NO,这里我们需要对中文进行转码;Why ? 我们看一下这串字符 kw=%E8%B5%B5%E4%B8%BD%E9%A2%96

大家下意识的也许会认为它就是一串乱码,这里要纠正一下,实质上它不是乱码,它只是一个url编码,什么是url编码呢?其实从本质上讲就是一个ASCII码!大家也许奇怪了,什么情况,直接用中文它不香吗? 何必要换来换去的,其实这追溯到根源,很简单,因为计算机是老外发明的,所以人家根本不可能用中文去进行命名的;至此,相信大家应该也都能明白为什么了。

在了解完网站结构之后,二话不说,咱们先拿到数据再说,一切不以先拿到数据就去处理的行为都是耍流氓。 - 逻辑-Tony 😁

-实战

需要安装的库:

pip install requests

第一步:请求网络,获取数据

考虑到为了方便大家的阅读,所以在请求的时候我这里就直接给进行二次封装了。

import requests

# 通过 url 获取数据

def get_requests_page(url):

# 请求网络 设置字符编码 将bytes进行转换

page = requests.get(url).content.decode('utf-8')

return page

第二步:解析并处理数据

处理数据的时候,我这里就不通过第三方的框架解析了,以一个最简单的str方式,给大家演示一遍。

除此之外也是可以通过别的方式进行解析,有心的同学可以自行尝试。

#第二步: 单个页面数据里通过查找字符串获取所有图片链接

def findall_in_page(page, startpart, endpart):

all_strings = []

# 向下查找 如果!=-1 就说明找到了

while page.find(startpart, end) != -1:

# 起始坐标

start = page.find(startpart, end) + len(startpart)

# 结尾坐标 "

end = page.find(endpart, start)

# 切片

string = page[start:end]

all_strings.append(string)

return all_strings

关键的地方我都通过注释的方式,给大家标注了,如果某地方不理解,可以在下方联系我进行咨询。

import urllib.parse

#第三步: 得到所有页面的 url ,分别得到各个数据

def pages_from_duitang(label):

pages = []

url = 'https://www.duitang.com/napi/blog/list/by_search/?kw={}&start={}&limit=1000'

# 将中文转成 url 编码

label = urllib.parse.quote(label)

for index in range(0, 3600, 100):

u = url.format(label, index)

page = get_requests_page(u)

pages.append(page)

image

#第四步: 获取所有页面的图片链接

def pic_urls_from_pages(pages):

pic_urls = []

for page in pages:

urls = findall_in_page(page, 'path:"', '"')

pic_urls.append(urls)

return pic_urls

这里我们已经将所有需要的url全部解析出来了;至此,我们第二步的解析数据就完成了。

image

第三步:下载数据进行存储

#第五步: 通过 url 下载单张图片

def download_pics(url, name):

r = requests.get(url)

path = 'tony_pics/' + str(name) + '.jpg'

with open(path, 'wb+') as file:

file.write(r.content)

第四步:代码逻辑汇总、整合

# 第六步 : 总函数

def main(label):

# 获取所有页面的数据

pages = pages_from_duitang(label)

# 获取所有图片的链接

pic_urls = pic_urls_from_pages(pages)

numbers = 0

for url in pic_urls:

numbers += 1

print('正在下载第 {} 张图片'.format(numbers))

download_pics(url, numbers)

第五步:效果展示

if __name__ == '__main__':

main('赵丽颖')

普通数据下载速度

这里以下载数据时3秒计时为期限;可以看到数据已经下载至第24张图片。

image

接下来,核心点来了;我会对代码进行改造,在提高程序对数据下载的速度以外;还能对代码的性能进行优化。

这里我使用的方式是多线程;不否认除此之外还有更优的方案;大家可以自行尝试。

import threading

# 设置线程锁

thread_lock = threading.BoundedSemaphore(value=10)

# 开启线程池

t = threading.Thread(target=download_pics, args=(url, numbers))

t.start()

优化之后的数据下载速度

运行效果的时间 这里以下载数据时3秒计时为期限;可以看到数据已经下载至第108张图片了。

这就是程序优化的魅力,所以大家在学习的过程中一定要有深度的学习,因为任何知识点如果大家只是学习了浅显的表面,是没有任何用处的。因为时间在变,互联网在变,我们若不想被淘汰只能去追赶;这就是互联网。。。

image

在这个浮躁的时代;竟然还有人能坚持篇篇原创;

如果本文对你学习有所帮助-可以点赞👍+ 关注!将持续更新更多新的文章。

支持原创。感谢!

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值