大计算机基础试题分析与解答,2017年同等学力申硕计算机综合试题解析--数学基础...

声明:题目是我从同学分享那获取的,有可能出现抄错题目的情况。试题解析是本人自己做的,再根据教材理论来完成本文编写,符号太多编写工作量大,如发现答案有错误或者不够准确请及时给我留言,如需转载请表明出处。感谢所有提出意见和建议,以及帮助过我的朋友。如果觉得还行,欢迎点赞转发,谢谢!

一、逻辑化语句(论域为一切事物,共5分)

1、(2分)只有天不下雨,我才开车出行

解析: P(x) : x天下雨; Q(x):x天,我开车出行。

math?formula=%5Cforall%20x%20%20Q(x)%20%5Crightarrow%20%E2%94%90P(x)

2、(3分)猫必抓鼠(要求写出两种形式,一种使用全称量词,一种使用存在量词)

解析: P(x) :x是动物;Q(x):x是猫 ;R(x) x抓老鼠。

math?formula=%5Cforall%20x%20%20P(x)%20%5Cland%20Q(x)%20%20%5Crightarrow%20%20R(x) ;所有的猫都抓老鼠

math?formula=%E2%94%90%5Cexists%20x%20(P(x)%20%5Cland%20%20Q(x)%20%5Cland%20%20%E2%94%90R(x))%20 ;不存在不抓老鼠的猫。

二、填空题(每空2分,共8分)

1、函数

math?formula=f(t)%20%3D%20(1-2t)%5E%7B-7%7D

math?formula=t%5E5 的系数是___14784___

解析:考点是牛顿二项式扩展公式

math?formula=(1-x)%5E%7B-n%7D%20%3D%20%5Csum_%7Bk%3D1%7D%20C_%7B(n%2Bk-1%2Ck)%7D%20x%5Ek%20

math?formula=f(t)%20%3D%20(1-2t)%5E%7B-7%7D%20%3D%20%20%5Csum_%7Bk%3D1%7D%20C_%7B(6%2Bk%2Ck)%7D%20(2t)%5Ek%20%EF%BC%8C%20a_%7Bk%7D%20%3D%20%20C_%7B(6%2Bk%2Ck)%7D2%5Ek , 当k = 5时,

math?formula=a_%7B5%7D%20%3D%20C_%7B(5%2B6%2C5)%7D*2%5E5%20%3D%20%20%5Cfrac%20%7B11*10*9*8*7%7D%7B5*4*3*2*1%7D%20*%2032%20%3D%20462%20*%2032%20%3D%2014784%20%20.

2、设T是一个有k个顶点的树,则T的着色数是__2___

解析:树的着色数为2。这个可以证明,证明取树G的任意一点P,对树中所有结点按下面方式着色:如果结点与P的路径长为偶数,则该结点(包括P点)着某种颜色C1,如果结点与P的路径长为奇数,则该结点着另外一种颜色C2,如果此时有相邻的两点A,B着同一种颜色,不失一般性,设A,B着颜色C1,则P到A,B各有一条路径长为偶数的路,该路与AB边就构成了回路,这与G是树矛盾,故不可能有相邻的两点着同一种颜色,于是用C1,C2两种颜色对树G进行了正常着色,故G的着色数为2。

3、一个饭店有3种甜点,而且无限多。小王选取四个甜点的方法有___15_____

解析:用S是有k种类型对象的多重集合,每种元素具有无限的重复数,那么S的r组合的个数为

,因此本题的答案为

math?formula=C_%7B(r%2Bk-1%2Cr)%7D%20其中r=4,k=3 即

math?formula=C_%7B(6%2C4)%7D%20%3D%20C_%7B(6%2C2)%7D%3D%5Cfrac%7B6*5%7D%7B1*2%7D%20%3D15

4、设

math?formula=m%3Dp_%7B1%7D%5E%7Bt_%7B1%7D%7D%20p_%7B2%7D%5E%7Bt_%7B2%7D%7D%20...p_%7Bk%7D%5E%7Bt_%7Bk%7D%7D%20 是m的唯一素数分解,其中

math?formula=p_%7B1%7D%20p_%7B2%7D%20...p_%7Bk%7D%20 是不同的素数。

6eb21e7ead94

公式图

对于大于1的整数n,

math?formula=%5Csum_%7Bd%2Fn%7Du(d)%20%3D%20_

math?formula=(-1)%5E%7Bn-1%7D______

解析:(仅供参考)因为n>1;n的唯一素数分解

math?formula=d%3Dp_%7B1%7D%5E%7Bt_%7B1%7D%7D%20p_%7B2%7D%5E%7Bt_%7B2%7D%7D%20...p_%7Bn%7D%5E%7Bt_%7Bn%7D%7D%20,因此

math?formula=u(d)%20%3D%200%20%2Cu(d)%20%3D%20(-1)%5En%2C%20u(d)%3D1. 其中

math?formula=u(d)%3D1只有d=1,

math?formula=p_%7Bn%7D是素数,即

math?formula=t_%7B1%7D%2Ct_%7B2%7D%2C...%2Ct_%7Bn%7D均为0, 因此答案为

math?formula=%5Csum_%7Bd%2Fn%7Du(d)%20%3D%20(-1)%5En%20%2B%200%20%2B1%20%3D%20(-1)%5E%7Bn-1%7D

三、计算题(要求写出详细运算步骤,共15分)

1、(5分)求在[99,1000]范围内不能被5、6、8中任何一个数整除的数的个数。

解析:用容斥原理解决此问题。全集个数为N=902

令能被5整除的数的集合为A个数为|A|=1000/5-98/5 = 200-19 =181,

能被6整除的数集合为B个数为|B|=1000/6-98/6 = 166-16 =150 ,

能被8整除的数集合为C个数为|C|=1000/8-98/8 = 125-12=113。

能同时被5和6最小公倍数30整除的数的个数位|A∩B|=1000/30-98/30=33-3 = 30

能同时被6和8最小公倍数24整除的数的个数位|B∩C|=1000/24-98/24=41-4 = 37

能同时被5和8最小公倍数40整除的数的个数位|A∩C|=1000/40-98/40=25-2 = 23

能同时被5,6和8的最小公倍数120整除的个数位A∩B∩C| = 1000/120= 8

因此不能被5,6,8任何一个数整除的数集个数为

math?formula=%7C%5Cbar%7BA%7D%20%5Ccap%20%5Cbar%7BB%7D%20%5Ccap%20%20%5Cbar%7BC%7D%20%20%7C%20%3D%20N%20-%20%7CA%7C%20-%20%7CB%7C-%20%7CC%7C%20%2B%20%7CA%5Ccap%20B%20%7C%2B%20%7CB%5Ccap%20C%20%7C%20%2B%20%7CA%5Ccap%20C%20%7C%20-%7CA%20%5Ccap%20B%20%5Ccap%20C%7C

= 902-181-150-113+30+37+23-8 =  540,即有540个数不能被5,6,8中任意一个数整除。

2.(4 分)求出

math?formula=%E2%94%90(P%5Cleftrightarrow%20Q%20)%5Cland%20(%E2%94%90P%5Crightarrow%20R)的主析取范式和主合取范式(要求最后结果分别用极小项和极大项以及相应数字的简洁形式表示)。

解析:这个题有两种解法,一种是真值表,一种是直接运算;

方法一:真值表

6eb21e7ead94

真值表

可得主析取范式

math?formula=%3D%20m_%7B3%7D%20%5Clor%20m_%7B4%7D%20%20%5Clor%20m_%7B5%7D%20

主合取范式

math?formula=%3D%20M_%7B0%7D%20%5Cland%20M_%7B1%7D%20%20%5Cland%20M_%7B2%7D%20%20%20%5Cland%20M_%7B6%7D%20%20%5Cland%20M_%7B7%7D%20%20

方法二:

math?formula=%E2%94%90(P%5Cleftrightarrow%20Q%20)%5Cland%20(%E2%94%90P%5Crightarrow%20R)%20%3D%E2%94%90((Q%5Crightarrow%20P%20)%5Cland%20(P%5Crightarrow%20Q%20))%5Cland%20(%E2%94%90P%5Crightarrow%20R) (这一步容易出错)

math?formula=%3D%E2%94%90(%E2%94%90Q%20%5Clor%20P%20)%5Clor%20%E2%94%90(%E2%94%90P%5Clor%20Q%20)%5Cland%20(P%5Clor%20R)%20%3D%20(Q%20%5Cland%20%E2%94%90P%20)%5Clor%20%20(P%5Cland%20%E2%94%90%20Q%20)%20%5Cland%20(P%5Clor%20R)

math?formula=%3D%20(%7B(Q%20%5Cland%20%E2%94%90P%20)%20%5Cland%20(R%20%5Clor%20%E2%94%90%20R)%7D)%5Clor%20%20((P%5Cland%20%E2%94%90%20Q%20)%20%5Cland%20(R%20%5Clor%20%E2%94%90%20R))%20%5Cland%20(P%5Clor%20R)

math?formula=%3D%20(Q%20%5Cland%20%E2%94%90P%20%5Cland%20R%20)%20%5Clor%20(Q%20%5Cland%20%E2%94%90P%20%5Cland%20%20%E2%94%90%20R)%20%5Clor%20%20(P%5Cland%20%E2%94%90%20Q%20%5Cland%20R%20%20)%20%5Clor%20(P%5Cland%20%E2%94%90%20Q%20%5Cland%20%E2%94%90%20R)%20%5Cland%20(P%5Clor%20R)

math?formula=%3D%20(P%20%5Cland%20Q%20%5Cland%20%E2%94%90P%20%5Cland%20R%20)%20%5Clor%20(P%20%5Cland%20Q%20%5Cland%20%E2%94%90P%20%5Cland%20%20%E2%94%90%20R)%20%5Clor%20%20(P%20%5Cland%20P%20%5Cland%20%E2%94%90%20Q%20%5Cland%20R%20%20)%20%5Clor%20(P%20%5Cland%20P%20%5Cland%20%E2%94%90%20Q%20%5Cland%20%E2%94%90%20R)%20%5Clor%20(R%20%5Cland%20Q%20%5Cland%20%E2%94%90P%20%5Cland%20R%20)%20%5Clor%20(R%20%5Cland%20Q%20%5Cland%20%E2%94%90P%20%5Cland%20%20%E2%94%90%20R)%20%5Clor%20%20(R%20%5Cland%20P%20%5Cland%20%E2%94%90%20Q%20%5Cland%20R%20%20)%20%5Clor%20(R%20%5Cland%20P%20%5Cland%20%E2%94%90%20Q%20%5Cland%20%E2%94%90%20R)%20

math?formula=%3D%20%20(P%20%5Cland%20%E2%94%90%20Q%20%5Cland%20R%20%20)%20%5Clor%20(P%20%5Cland%20%20%E2%94%90%20Q%20%5Cland%20%E2%94%90%20R)%20%5Clor%20(%E2%94%90P%20%5Cland%20Q%20%5Cland%20%20R%20)

得主析取范式为

math?formula=%3D%20m_%7B101%7D%20%5Clor%20m_%7B100%7D%20%20%5Clor%20m_%7B011%7D%20%3D%20m_%7B5%7D%20%5Clor%20m_%7B4%7D%20%20%5Clor%20m_%7B3%7D%20%20%3D%20m_%7B3%7D%20%5Clor%20m_%7B4%7D%20%20%5Clor%20m_%7B5%7D%20

因此主合取范式为

math?formula=%3D%20M_%7B0%7D%20%5Cland%20M_%7B1%7D%20%20%5Cland%20M_%7B2%7D%20%20%20%5Cland%20M_%7B6%7D%20%20%5Cland%20M_%7B7%7D%20%20

3(6分)有t个球排一排,t大于等于3。用红、橙、黄、蓝、绿5种颜色染色。每个球一种颜色,要求红橙黄的球至少出现一次。有多少种方法?

解析:该问题可以转换一下思考,即有红、橙、黄、蓝、绿5种球,每种颜色有无穷个,从中取t排列,且球数满足红橙黄的球至少出现一次。这样该题就变成了排列型数列,即用指数型母函数的方法来解。如下所示:

math?formula=G(x)%20%3D%20(%5Cfrac%7Bx%7D%7B1!%7D%20%2B%20%5Cfrac%7Bx%5E2%7D%7B2!%7D%2B%20%5Cfrac%7Bx%5E3%7D%7B3!%7D%2B...)%5E3%20(1%2B%5Cfrac%7Bx%7D%7B1!%7D%20%2B%20%5Cfrac%7Bx%5E2%7D%7B2!%7D%2B%20%5Cfrac%7Bx%5E3%7D%7B3!%7D%2B...)%5E2%20%3D%20(e%5Ex-1)%5E3%20e%5E%7B2x%7D%20%3D%20(e%5E%7B3x%7D-3e%5E%7B2x%7D%20%2B%203e%5E%7Bx%7D%20-1)%20e%5E%7B2x%7D%20%3D%20e%5E%7B5x%7D-3e%5E%7B4x%7D%20%2B%203e%5E%7B3x%7D%20-%20e%5E%7B2x%7D

math?formula=%20%3D%20e%5E%7B5x%7D-3e%5E%7B4x%7D%20%2B%203e%5E%7B3x%7D%20-%20e%5E%7B2x%7D%20%20%3D%20%5Csum_%7Bt%7D%20(5%5Et-3*4%5Et%20%2B%203*3%5Et%20-2%5Et%20)%5Cfrac%7Bx%5Et%7D%7Bt!%7D%20

因此

math?formula=a_%7Bt%7D%20%3D%20%20(5%5Et-3*4%5Et%20%2B%203*3%5Et%20-2%5Et%20),则

math?formula=%20(5%5Et-3*4%5Et%20%2B%203*3%5Et%20-2%5Et%20)种方法根据t的不同取值结果不同。

四、解答题(8分)

设教室有8个座位排成一排。八位同学A1,A2,…,A8需要坐在这里上两节课。设第一节课Ai坐在第i个座位上。

(1)若第二节课要求A1-A4与自己第一节课时位置不同,A5-A8与第一节课相同,有多少种坐法?

(2)第二节课要求只有四位同学与第一节课不同,但不指定是哪四位。有多少种坐法?

解析:该题考的是错排问题。

(1)A1-A4不在自己位置上,即这四位同学完全错排

math?formula=D_%7B4%7D%20%3D4%EF%BC%81%EF%BC%881-%5Cfrac%7B1%7D%7B1%EF%BC%81%7D%20%2B%5Cfrac%7B1%7D%7B2%EF%BC%81%7D-%5Cfrac%7B1%7D%7B3%EF%BC%81%7D%2B%5Cfrac%7B1%7D%7B4%EF%BC%81%7D%EF%BC%89%20%3D%209,另外四位同学位置不变。关于错排可以用容斥原理来推,即

math?formula=i_%7B1%7D%5Cneq%201%EF%BC%8Ci_%7B2%7D%5Cneq%202%EF%BC%8Ci_%7B3%7D%5Cneq%203%EF%BC%8Ci_%7B4%7D%5Cneq%204都不在原来的秩序位置上。

math?formula=D_%7B4%7D%20%3D%7C%5Cbar%7BA_%7B1%7D%7D%20%5Ccap%20%5Cbar%7BA_%7B2%7D%7D%20%20%5Ccap%20%5Cbar%7BA_%7B2%7D%7D%20%5Ccap%20%5Cbar%7BA_%7B4%7D%7D%20%7C%20%3D%20N-%7CA_%7B1%7D%20%5Ccup%20A_%7B2%7D%20%5Ccup%20A_%7B2%7D%20%5Ccup%20A_%7B4%7D%7C%20%3DN-%5Csum_%7Bi%3D1%7D%5E4%20%7CA_%7Bi%7D%7C%2B%5Csum_%7Bi%3D1%7D%5E4%5Csum_%7Bj%3Ei%7D%20%7CA_%7Bi%7D%5Ccap%20A_%7Bj%7D%7C%20...%7B(-1)%7D%5E4%7CA_%7B1%7D%5Ccap%20A_%7B2%7D%5Ccap%20A_%7B3%7D%5Ccap%20A_%7B4%7D%7C

math?formula=%3D%204!%20-%20C_%7B(4%2C1)%7D3!%20%2B%20C_%7B(4%2C2)%7D2!%20-C_%7B(4%2C3)%7D1!%2BC_%7B(4%2C4)%7D0!%3D4!(1-%5Cfrac%7B1%7D%7B1!%7D%2B%5Cfrac%7B1%7D%7B2!%7D-%5Cfrac%7B1%7D%7B3!%7D%2B%5Cfrac%7B1%7D%7B4!%7D%20)%20=9

(2)第二节有任意4位同学位置与第一节不同,分两步解决:

第一步:先从8位同学中选出4位 ,即

math?formula=C_%7B(8%2C4)%7D =

math?formula=%5Cfrac%7B8*7*6*5%7D%7B4*3*2*1%7D%20%3D%2070

第二步:再对选出的4位进行完全错排得解:

math?formula=C_%7B(8%2C4)%7DD_%7B4%7D%3D70*9%20%3D%20630

五、证明题(4分)

设⊕表示两个集合的对称差,对于三个集合A、B、C,如果A⊕B=A⊕C,则B=C。

证明:本题利用集合演算较为方便,在演算中利用A⊕A=∅,∅⊕A=A⊕∅=A。

由A=A,A⊕B=A⊕C 以及⊕有结合律,可得

A⊕(A⊕B)=A⊕(A⊕C)

math?formula=%5CRightarrow%20(A⊕A)⊕B=(A⊕A)⊕C (结合律)

math?formula=%5CRightarrow%20 ∅⊕B = ∅⊕C

math?formula=%5CRightarrow%20 B = C  得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值