声明:题目是我从同学分享那获取的,有可能出现抄错题目的情况。试题解析是本人自己做的,再根据教材理论来完成本文编写,符号太多编写工作量大,如发现答案有错误或者不够准确请及时给我留言,如需转载请表明出处。感谢所有提出意见和建议,以及帮助过我的朋友。如果觉得还行,欢迎点赞转发,谢谢!
一、逻辑化语句(论域为一切事物,共5分)
1、(2分)只有天不下雨,我才开车出行
解析: P(x) : x天下雨; Q(x):x天,我开车出行。
2、(3分)猫必抓鼠(要求写出两种形式,一种使用全称量词,一种使用存在量词)
解析: P(x) :x是动物;Q(x):x是猫 ;R(x) x抓老鼠。
;所有的猫都抓老鼠
;不存在不抓老鼠的猫。
二、填空题(每空2分,共8分)
1、函数
中
的系数是___14784___
解析:考点是牛顿二项式扩展公式
, 当k = 5时,
2、设T是一个有k个顶点的树,则T的着色数是__2___
解析:树的着色数为2。这个可以证明,证明取树G的任意一点P,对树中所有结点按下面方式着色:如果结点与P的路径长为偶数,则该结点(包括P点)着某种颜色C1,如果结点与P的路径长为奇数,则该结点着另外一种颜色C2,如果此时有相邻的两点A,B着同一种颜色,不失一般性,设A,B着颜色C1,则P到A,B各有一条路径长为偶数的路,该路与AB边就构成了回路,这与G是树矛盾,故不可能有相邻的两点着同一种颜色,于是用C1,C2两种颜色对树G进行了正常着色,故G的着色数为2。
3、一个饭店有3种甜点,而且无限多。小王选取四个甜点的方法有___15_____
解析:用S是有k种类型对象的多重集合,每种元素具有无限的重复数,那么S的r组合的个数为
,因此本题的答案为
其中r=4,k=3 即
4、设
是m的唯一素数分解,其中
是不同的素数。
公式图
对于大于1的整数n,
_
______
解析:(仅供参考)因为n>1;n的唯一素数分解
,因此
其中
只有d=1,
是素数,即
均为0, 因此答案为
。
三、计算题(要求写出详细运算步骤,共15分)
1、(5分)求在[99,1000]范围内不能被5、6、8中任何一个数整除的数的个数。
解析:用容斥原理解决此问题。全集个数为N=902
令能被5整除的数的集合为A个数为|A|=1000/5-98/5 = 200-19 =181,
能被6整除的数集合为B个数为|B|=1000/6-98/6 = 166-16 =150 ,
能被8整除的数集合为C个数为|C|=1000/8-98/8 = 125-12=113。
能同时被5和6最小公倍数30整除的数的个数位|A∩B|=1000/30-98/30=33-3 = 30
能同时被6和8最小公倍数24整除的数的个数位|B∩C|=1000/24-98/24=41-4 = 37
能同时被5和8最小公倍数40整除的数的个数位|A∩C|=1000/40-98/40=25-2 = 23
能同时被5,6和8的最小公倍数120整除的个数位A∩B∩C| = 1000/120= 8
因此不能被5,6,8任何一个数整除的数集个数为
= 902-181-150-113+30+37+23-8 = 540,即有540个数不能被5,6,8中任意一个数整除。
2.(4 分)求出
的主析取范式和主合取范式(要求最后结果分别用极小项和极大项以及相应数字的简洁形式表示)。
解析:这个题有两种解法,一种是真值表,一种是直接运算;
方法一:真值表
真值表
可得主析取范式
主合取范式
方法二:
(这一步容易出错)
得主析取范式为
因此主合取范式为
3(6分)有t个球排一排,t大于等于3。用红、橙、黄、蓝、绿5种颜色染色。每个球一种颜色,要求红橙黄的球至少出现一次。有多少种方法?
解析:该问题可以转换一下思考,即有红、橙、黄、蓝、绿5种球,每种颜色有无穷个,从中取t排列,且球数满足红橙黄的球至少出现一次。这样该题就变成了排列型数列,即用指数型母函数的方法来解。如下所示:
因此
,则
种方法根据t的不同取值结果不同。
四、解答题(8分)
设教室有8个座位排成一排。八位同学A1,A2,…,A8需要坐在这里上两节课。设第一节课Ai坐在第i个座位上。
(1)若第二节课要求A1-A4与自己第一节课时位置不同,A5-A8与第一节课相同,有多少种坐法?
(2)第二节课要求只有四位同学与第一节课不同,但不指定是哪四位。有多少种坐法?
解析:该题考的是错排问题。
(1)A1-A4不在自己位置上,即这四位同学完全错排
,另外四位同学位置不变。关于错排可以用容斥原理来推,即
都不在原来的秩序位置上。
=9
(2)第二节有任意4位同学位置与第一节不同,分两步解决:
第一步:先从8位同学中选出4位 ,即
=
第二步:再对选出的4位进行完全错排得解:
五、证明题(4分)
设⊕表示两个集合的对称差,对于三个集合A、B、C,如果A⊕B=A⊕C,则B=C。
证明:本题利用集合演算较为方便,在演算中利用A⊕A=∅,∅⊕A=A⊕∅=A。
由A=A,A⊕B=A⊕C 以及⊕有结合律,可得
A⊕(A⊕B)=A⊕(A⊕C)
(A⊕A)⊕B=(A⊕A)⊕C (结合律)
∅⊕B = ∅⊕C
B = C 得证。