概率论第六章数理统计思维导图_茆诗松的概率论与数理统计(第六章)

本章干货十足:

  1. 开篇集中讨论“无偏、有效、相合、渐近正态”四大性质,整理它们的联系与差异;
  2. 不同方法解决EM例题,引入“双硬币模型”说明EM算法的应用场景和基本思路。

本章的主题是参数估计,分为两种方法:一是点估计,二是区间估计。其中“点估计”的方法包括:矩估计、极大似然估计以及贝叶斯估计等,占据了较多篇幅。其实除了估计方法,更重要的是理解估计量的性质,例如:无偏性、有效性、相合性、渐近正态性等。书中把估计的方法和性质结合起来讲,我准备把估计量的性质单独拿出来讲,以便比较各种性质之间的差异。

一、估计及其性质

“估计”在中文里既可以作名词,也可以作动词。用英文的话,可以表示成不同的单词:

estimate:所谓的“估计”(动词)就是根据样本预测总体分布中的未知参数。例如,已知总体服从正态分布

,但总体均值
未知,我们通过某个函数“估计”总体均值,

estimator:“估计量”(名词)

实际上是一个统计量,它是通过一个不含未知参数的样本函数计算出来的结果。一般使用
表示总体的参数,
表示参数的估计量。

estimation:“估计法”(名词)表示寻找函数

的过程,可以理解为一种估计方法。例如:Maximum Likelihood Estimation,最大似然估计法。

随着样本不同,同一估计法得到的结果可能是不一样的,因此“估计量”也是一个随机变量。对于同一个参数,有不同的估计方法,而且看起来都是合理的。如何比较它们的优劣呢?

(1)均方误差 MSE Mean Square Error

评价一个估计量的好坏,很自然地会想到:衡量“估计量”与“真实值”之间的距离,距离越小表示估计量的性能越好。也就是所谓的“均方误差”函数:

也就是距离平方的期望值,如果将其进一步展开:

注意:

均为数值,
表示参数的真实值,
表示估计量的数学期望。

由此看见,均方误差由两部分组成:一是估计量的方差(Variances) ,即

;二是估计量的系统偏差(Bias)的平方,即

从“马同学”处借来此图,它可以帮助理解“方差”与“偏差”:

12ef259fec5b687e24732bf836f7d065.png
备注:靶心表示“真实值”,红叉表示“估计值”

“方差”衡量估计值的分散程度,“偏差”衡量估计值的期望与真实值的距离。

左上图:估计值落在靶心四周,此时“方差”较大但“偏差”较小;

右上图:估计值落在靶心邻近,此时“方差”、“偏差”均较小;

左下图:估计值离靶心较远,呈分散状,此时“方差”、“偏差”均较大;

右下图:估计值离靶心较远,落点集中,此时“偏差”较大但“方差”较小。

(2)无偏性

有了前面的铺垫,无偏性就很好理解,表示估计量“偏差”一项为0,即没有系统性的偏差。以一把秤为例,产生误差的原因有二:一是称本身结构有问题,测量的结果总是偏高或偏低,这属于系统性误差;二是由于操作上或其他随机因素,导致测量的结果有时偏大,有时偏小,把这些误差平均起来结果为0。前者是“偏差”项,后者是“方差”项。

,则称
“无偏估计”

无偏性的特点:

  1. 估计量的无偏性是固定n个样本就具有的性质,属于“小样本性质”;
  2. 无偏性不具有不变性,若
    的无偏估计,一般而言,其非线性函数
    不是
    的无偏估计。书中例6.1.2说明了这一性质。因此无偏性无法简单地从一个参数推广至其他参数。

(3)有效性

对于同一参数可能存在多个无偏估计,又该如何选择呢?根据MSE的定义,当两个估计量都具有无偏性时,它们的误差完全由“方差”一项决定,即

此时当然是“方差”越小越好,即越“有效”。

值得注意的是:比较“有效性”的前提条件是估计量具有“无偏性”。

一个重要的定义:

的无偏估计,如果对另外任意一个
的无偏估计
,在参数空间上都有
<
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值