深度学习课程大纲_2019 伯克利深度学习课程正式上线(附完整资源)

点击上方“AI有道”,选择“星标”公众号

重磅干货,第一时间送达f5d9fffe555f88e63c9eea500dae290a.png

李沐大神的新课《Introduction to Deep Learning》于今年 1 月份在 UC 伯克利上线了。同授这门课程的还有李沐的亚马逊同事 Alex Smola。

课程介绍

本课程提供深入学习的实践介绍,包括理论动机和如何在实践中实施。作为课程的一部分,我们将介绍多层感知器、反向传播、自动微分和随机梯度下降。此外,我们还引入了用于图像处理的卷积网络,从简单的 Lenet 到用于高精度模型的 Resnet 等最新架构。其次,讨论了序列模型和循环网络,如 LSTMS、GRU 和注意机制。在整个课程中,我们强调高效的实现、优化和可扩展性,例如多个 GPU 和多台机器。本课程的目标是提供一个良好的理解和能力,建立现代非参数估计。整个课程以 Jupyter 笔记本为基础,让学生快速获得经验。

课程内容大致是按照李沐老师的开源新书《动手学深度学习》来安排的。

先修条件

本课程需要具备一些先修条件。例如 Python 编程(CS 61a 或 CS/STAT C8 和 CS 88), 线性代数 (MATH 54, STAT 89A, or EE 16A), 概率论 (STAT 134, STAT 140, or EE 126), 统计学 (STAT 20, STAT 135, or CS/STAT C100) 。

课程计划

课程大纲和计划如下:

04838725ff22e9e60bf88f098394cd00.png

1e7697ba6f9f49c5cbc0a5f1400caf61.png

目前前两周的课程已经放出,包含 pdf 课件。

课程作业

该课程每一周都会配备编程作业,在 Jupyter 上完成。目前已经放出第一周的编程作业!

2f71066928e48b84e53b3978872269c2.png

课程资源

课程主页:

http://courses.d2l.ai/berkeley-stat-157/index.html

视频地址:

B 站

https://www.bilibili.com/video/av41905755/

油管

https://www.youtube.com/playlist?list=PLZSO_6-bSqHQHBCoGaObUljoXAyyqhpFW

书籍:

https://zh.d2l.ai/

GitHub:

https://github.com/d2l-ai/berkeley-stat-157

重磅推荐

547页李沐《动手学深度学习》中文版上线!

79c85c74e3af602637e869af85948c87.gif

【推荐阅读】

干货 | 公众号历史文章精选(附资源)

我的深度学习入门路线

我的机器学习入门路线图

ac64ea43cf202cbd8a32ce2264be85b4.png

👆加入AI视界,离AI更近一步!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值