二重积分的柯西施瓦茨不等式_柯西不等式的证明

本文探讨了柯西不等式在数学中的广泛应用,并详细证明了柯西-施瓦茨不等式。首先介绍了内积空间的概念,然后通过向量的模和内积关系进行证明。在向量线性无关的情况下,利用新定义的向量和内积空间的性质,得出不等式。最后提到柯西不等式在欧式空间和量子力学的海森堡不确定性原理中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

21bec393b252ba344553127371f4f8f0.png

柯西不等式在数学的各个领域中均有出现,从竞赛里的放缩到量子力学里的不确定性原理中均有应用,所以本篇文章将证明广义的柯西不等式,即柯西—施瓦茨不等式(Cauchy—Shwarz inequality)

首先我们需要先了解一下什么是内积空间(Inner product space)。在数学中(尤其是代数),人们总喜欢将我们平时接触的世界

进行抽象。人们提取出欧式空间中线性的特点,定义了
向量空间(Vector space)。在此基础上,他们把欧式空间里的 点积(Dot product)推广,定义了广义的 内积空间(Inner product space)。其中内积空间就是定义了内积运算(即
)的向量空间,但是定义的内积需要满足多个属性。其中我们要用到这些(为了表示方便,设V为内积空间,
为一个数域):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值