目标检测coco数据集点滴介绍
1. COCO数据集介绍
MS COCO 是google 开源的大型数据集, 分为目标检测、分割、关键点检测三大任务, 数据集主要由图片和json 标签文件组成。 coco数据集有自带COCO API,方便对json文件进行信息读取。本博客介绍是目标检测数据集格式的制作。
COCO通过大量使用Amazon Mechanical Turk来收集数据。COCO数据集现在有3种标注类型:object instances(目标实例), object keypoints(目标上的关键点), 和image captions(看图说话),使用JSON文件存储。
2. MSCOCO数据集数据结构{
"images":
[
{"file_name":"cat.jpg","id":1,"height":1000,"width":1000},
{"file_name":"dog.jpg","id":2,"height":1000,"width":1000},
...
]
"annotations":
[
{"image_id":1,"bbox":[100.00,200.00,10.00,10.00],"category_id":1}
{"image_id":2,"bbox":[150.00,250.00,20.00,20.00],"category_id":2}
...
]
"categories":</

本文介绍了COCO数据集在目标检测任务中的应用,包括数据结构、标注信息和性能指标。COCO数据集包含丰富的图像和标注,使用JSON存储,提供了12种性能评价标准,如平均精度(AP)和平均召回率(AR)等。
最低0.47元/天 解锁文章
233

被折叠的 条评论
为什么被折叠?



