相似对角化是线性代数中最重要的知识点之一。如果一个方阵相似于对角矩阵,也就是说存在一个可逆矩阵
使得
是对角矩阵,则
就被称为可以相似对角化的。
下面,我们就通过矩阵
的相似对角化:
来简单从数学角度解释下面几个问题:
- 为什么要进行矩阵的相似对角化?
- 什么样的矩阵可以相似对角化?
- 如何进行矩阵的相似对角化?
- 矩阵的相似对角化的几何理解。
在这之前你必须了解之前的推送内容:
- 如何理解线性变换
- 线性变换的矩阵
- 如何理解等价关系?
- 如何理解相似矩阵
- 如何理解特征值与特征向量
1 为什么要进行矩阵的相似对角化
1.1 相似对角化使得同一个线性变换表达方式变的简单
一个矩阵可以看作是一个线性变换在某组基下的矩阵(线性变换的矩阵 ),如果矩阵中非零元素过多,那么线性变换的表现形式就相对复杂。用本文开头的

而如果能选取不同基,使线性变换的矩阵变成对角矩阵。那么,线性变换的形式就会变得相对简单。注意:相似矩阵是同一个线性变换在不同基下的表现(详情点击如何理解相似矩阵)。用本文开头的

是不是能感觉到在选择了对角矩阵之后,线性变换的表现形式变得更加简单了。用 (如何理解相似矩阵)推送中的语言来说的话,对角矩阵一定是观看演出时的“最佳视角”。
1.2 一些特殊矩阵的对角化可以解决不同的实际问题。
例如实对称矩阵的相似对角化,可以解决一些二次型的图像问题(后期会详细介绍,敬请期待)。在物理学、图像处理方面都有应用。让我们继续用开头的矩阵,看看实对称矩阵的相似对角化是如何帮助我们了解这个二次型的图像吧。
一般情况下,是不容易确定一个带有交叉项的二次方程的图像的,例如
的图像(注意这里的矩阵就是文章开头的矩阵哦)。但通过相似对角化(实际为坐标轴旋转)可以消去二次型中的交叉项,并得到新的坐标系(

1.3 相似对角化是可对角化矩阵的方幂运算的工具
计算一个对角矩阵的任意次方幂是简单的,只需要将对角元素做方幂运算即可。然而对于一般矩阵进行方幂运算并不是一件容易的事情。相似对角化给了一个可对角化矩阵算方幂的办法:
从而,可以轻松得到:
1.4 期待你的更多相似对角化的应用
.....
2、什么样的矩阵可以对角化
并不是所有矩阵都可以对角化。一个
2.1 可以对角化的例子
继续用文章开头的矩阵为例,(其它更多例子可点击如何理解特征值与特征向量了解)。 下面两个矩阵所对应的线性变换都可以轻松找到两个线性无关的特征向量,因此是可以相似对角化的。


2.2 不能对角化的例子
下面的线性变换中,仅仅有一个线性无关特征向量,从而不能相似对角化(更多详情,点击如何理解特征值与特征向量了解)。

2.3 对角化还需要注意线性空间的基域的选择。
考虑下面的线性变换:平面上的逆时针旋转90度的变换:

从图中可以看出这个旋转变换没有实特征向量,然而这个矩阵是可以对角化的。因为,它存在两个线性无关的复特征向量。因此,把这个矩阵看作复数域上的二维线性空间的变换,他是可以相似对角化的:
3、如何进行矩阵的相似对角化
如果一个
需要注意的是,相似变换矩阵
4 矩阵的相似对角化的几何理解
在如何理解相似矩阵中,我们已经讨论过相似矩阵是同一个线性变换在不同基下的矩阵。而对角矩阵则是所有这些相似等价类中,最简单的代表(更多内容,点击如何理解等价关系?)
下面我们用前面两个可对角化的矩阵所对应的线性变换为例,一起来从变换的角度看看,相似对角矩阵是如何使线性变换看起来更容易的:




下面再把对角化前后放到一起来看看:

其实,可以看到对角矩阵对应的线性变换就是将网格线做平行移动即可。 希望这篇文章能帮助你理解相似对角化的意义。