python 一组数据 正态分布散点图_用 Python 检验数据正态分布的几种方法

本文介绍了正态分布的概念和重要性,并详细讲解了使用Python进行正态性检验的四种方法:Shapiro-Wilk test, KSTest, Anderson-Darling test以及normaltest,提供了每种方法的使用示例和返回值解释。" 107554644,935993,layui Tree 节点文字高亮实现,"['layui框架', '前端开发', '前端框架']
摘要由CSDN通过智能技术生成
2c33c7c33c4c4288a53257fcf720b5ff.png

什么是正态分布

关于什么是正态分布,早在中学时老师就讲过了。通俗来讲,就是当我们把数据绘制成频率直方图,所构成曲线的波峰位于中间,两边对称,并且随着往两侧延伸逐渐呈下降趋势,这样的曲线就可以说是符合数学上的正态分布。由于任何特征的频率总和都为100%或1,所以该曲线和横轴之间部分的面积也为100%或1,这是正态分布的几何意义。

如下图,是数据统计实例中出现的正态分布性数据:

9c69f7bbe325463b7b698fb32c3e5fb4.png

为什么要做正态性检验

对此我的理解是,正态性可以保证随机性,因为随机数就是正态分布的,这里可以用高尔顿板来形象化地理解:

高尔顿板为一块竖直放置的板,上面有交错排列的钉子。让小球从板的上端自由下落,当其碰到钉子后会随机向左或向右落下。最终,小球会落至板底端的某一格子中。假设板上共有 n 排钉子,每个小球撞击钉子后向右落下的概率为 ρ(当左、右概率相同时

为 0.5),则小球落入第 k 个格子概率为二项分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值