代数余子式之和怎么算_2021 考研数学该怎么复习?

分享者对比了中科院数学甲乙与数一、数二、数三的难度,并重点解析了高数甲的特点,强调扎实基础和做题技巧。提到个人经历、复习策略及备考经验,包括选择资料、时间安排和考试技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

统一回复:有几个人问我不同考研数学科目难度的比较,包括中科院数学甲乙、中科大数a数b以及统考数学一二三。数a数b的题目一点也没见过不做评论。其实我没的选,必须数甲量力,所以其他的就没关注过,只是看过一点数一和数学乙的题目。个人感觉难度数甲>数一>数二>数三。看过几道数乙的题目,感觉和数甲风格很像,数a数b的题目没见过[捂脸]

20考研今天刚出分,考的中科院高数甲(601),142分。

首先介绍一下这个考试科目的特点:

  1. 只有高等数学,没有线性代数和概率论
  2. 相对更大众化的数一、数二而言更偏证明而非计算。综合起来,难度相对数一来讲要难一些。当然,也许对于数学系出身的人来说,数一难于数甲?就看是喜好证明还是喜好计算了
  3. 一般而言是10道选择(一个5分)、10道大题(一个10分)。其中大题一定会有一个ODE、一个Stokes公式或者Gauss公式的题、一个直接计算或者需要换元的重积分、一个Fourier级数的题(先做一个展开,再用它算一些类似Basel Problem的级数求和)、最后一个题一般是不等式证明(考过离散和积分版本的柯西、离散版本的均值,今年是一个幂平均),一般还会有一个 极限
    0034bef8-7014-eb11-8da9-e4434bdf6706.png 或者
    0134bef8-7014-eb11-8da9-e4434bdf6706.png 语言的证明。

再介绍一下个人基本情况。因为各种原因导致需要考研,大学期间高数上下线性代数都是97 98左右,自学了数分、抽代。从大二开始带家教,一直在教高数、线代,还教过常微分方程,大概一共带了六七个。再加上是学物理的,所以高数基本相当于每天都在用,所以到开始复习之前,至少计算方面并没有忘记太多。

下面介绍一下复习过程,尤其适用于中科院自命题的高数甲(其他考试因为有线代概率论所以时间上可能需要有所调整)。

  1. 开始确定考研并搜集资料:6月底开始确定考研,选择考研资料。我准备了以下资料:

2.复习进度与资料使用(以下只是大致时间):

最后讲一些经验吧:最重要的是基本功要扎实、做题熟练度要有,这样的话基本120-130就没问题了。然后专题提高一定要拔得起来,知道压轴题难点在哪里、自己的弱项在哪里。最后一点也算是教训吧:平时要稍微多做一些考场模拟,掐好3个小时做,不要总是想着考场上自己就会好好检查了。平时就要好好练习怎么检查,不过这种事情也是我从小到大的一个通病,可能也不是备战考研这么半年一年的时间就可以解决的问题。

我准备在B站针对601高数甲进行讲解,因为现在市面上针对它的资料相对较少。链接bilibili.com/read/cv478

第一次视频已更新

中科院高数甲 一:初等数学复习_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili
内容概要:本文详细探讨了基于樽海鞘法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值