进行Kolmogorov-Smirnov测试是否合身。
这将针对给定的分布G(x)对观察到的随机变量的分布F(x)进行测试。在原假设下,两个分布相同,F(x)= G(x)。替代假设可以是“ two-sided”(默认值),‘less’或‘greater’。 KS测试仅对连续分布有效。
参数:
rvs:str, array_like, 或 callable如果是字符串,则应该是其中的分布名称scipy.stats。如果是数组,则它应该是一维随机变量观测值的数组。如果是可调用的,它应该是生成随机变量的函数;必须具有关键字参数大小。
cdf:str 或 callable如果是字符串,则应该是其中的分布名称scipy.stats。如果rvs是字符串,则cdf可以为False或与rvs相同。如果是可调用的,则该可调用的用于计算cdf。
args:tuple, sequence, 可选参数分发参数,如果rvs或cdf是字符串,则使用。
N:int, 可选参数如果rvs是字符串或可调用的样本大小。默认值为20。
alternative:{‘two-sided’, ‘less’, ‘greater’}, 可选参数定义替代假设。提供以下选项(默认为“ two-sided”):
‘two-sided’
‘less’:one-sided, see explanation in Notes
‘greater’:one-sided, see explanation in Notes
mode:{‘approx’, ‘asymp’}, 可选参数定义用于计算p-value的分布。以下选项可用(默认值为‘approx’):
<