ks检验python代码_python scipy stats.kstest用法及代码示例

本文介绍了如何使用Python的scipy.stats模块进行Kolmogorov-Smirnov检验(ks检验),包括参数设置、替代假设的选择以及示例代码,展示了ks检验在测试样本是否符合特定分布时的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

进行Kolmogorov-Smirnov测试是否合身。

这将针对给定的分布G(x)对观察到的随机变量的分布F(x)进行测试。在原假设下,两个分布相同,F(x)= G(x)。替代假设可以是“ two-sided”(默认值),‘less’或‘greater’。 KS测试仅对连续分布有效。

参数:

rvs:str, array_like, 或 callable如果是字符串,则应该是其中的分布名称scipy.stats。如果是数组,则它应该是一维随机变量观测值的数组。如果是可调用的,它应该是生成随机变量的函数;必须具有关键字参数大小。

cdf:str 或 callable如果是字符串,则应该是其中的分布名称scipy.stats。如果rvs是字符串,则cdf可以为False或与rvs相同。如果是可调用的,则该可调用的用于计算cdf。

args:tuple, sequence, 可选参数分发参数,如果rvs或cdf是字符串,则使用。

N:int, 可选参数如果rvs是字符串或可调用的样本大小。默认值为20。

alternative:{‘two-sided’, ‘less’, ‘greater’}, 可选参数定义替代假设。提供以下选项(默认为“ two-sided”):

‘two-sided’

‘less’:one-sided, see explanation in Notes

‘greater’:one-sided, see explanation in Notes

mode:{‘approx’, ‘asymp’}, 可选参数定义用于计算p-value的分布。以下选项可用(默认值为‘approx’):

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值