stamp = ts.index[2]print ts[stamp],'\n'
#还有更方便的用法,传入可以被解释为日期的字符串
print ts['1/10/2011']print ts['20110110'],'\n'
#对于较长的时间序列,只需传入“年”或“年月”即可轻松选取数据切片
long_ts = Series(np.random.randn(1000),
index= pd.date_range('1/1/2000',periods = 1000))#-*- coding:utf-8 -*-
importnumpy as npimportpandas as pdimportmatplotlib.pyplot as pltimportdatetime as dtfrom pandas importSeries,DataFramefrom datetime importdatetimefrom dateutil.parser importparseimporttimeprint long_ts,'\n'
print long_ts['2001'],'\n'
print long_ts['2001-05'],'\n'
#通过日期进行切片的方式只对规则Series有效:
print ts[datetime(2011,1,7):],'\n'
#由于大部分时间序列数据都是按照时间先后排序的,因此你可以用不存在于该时间序列中的时间戳对其进行切片(即范围查询)#就是说,本来1/6/2011不在index中,却可以用来当作范围
print ts['1/6/2011':'1/11/2011'],'\n' #这里可以传入字符串日期、datetime或者Timestamp
print 'This is time and localtime'
print "time.time(): %f" %time.time()printtime.localtime( time.time() )printtime.asctime( time.localtime(time.time()) )
ltime=time.localtime(int(time.time())) #time.time()不能直接运用strftime进行转换
print time.strftime("%Y-%m-%d %H:%M:%S", ltime)#time asctime() 函数接受时间元组并返回一个可读的形式为"Tue Dec 11 18:07:14 2008"
print 'over','\n'
#还有一个等价方法截取两个日期之间的TimeSeries.
print ts.truncate(after = '1/9/2011'),'\n'
#上面这些对DataFrame也有效
dates = pd.date_range('1/1/2000',periods = 100,freq = 'W-WED') #这里的freq是按照星期进行增加
long_df = DataFrame(np.random.randn(100,4),index = dates,columns = ['Colorado','Texas','New York','Ohio'])print long_df.ix['2001-05']
>>>
0.0751316698811
-0.622706612554
-0.622706612554
2000-01-01 -1.646726
2000-01-02 1.531423
2000-01-03 0.251503
2000-01-04 0.938951
2000-01-05 0.647967
2000-01-06 0.696173
2000-01-07 -1.372519
2000-01-08 -1.398277
2000-01-09 -0.679975
2000-01-10 -0.801375
2000-01-11 -0.241165
2000-01-12 -0.332811
2000-01-13 -0.337774
2000-01-14 0.826756
2000-01-15 -0.279239
...
2002-09-12 -0.097634
2002-09-13 2.222456
2002-09-14 0.042517
2002-09-15 0.266974
2002-09-16 0.038329
2002-09-17 -1.524744
2002-09-18 1.476706
2002-09-19 0.108336
2002-09-20 0.016759
2002-09-21 -0.072676
2002-09-22 -0.960545
2002-09-23 0.520699
2002-09-24 -1.188202
2002-09-25 1.669166
2002-09-26 -0.043997
Freq: D, Length: 1000
2001-01-01 -0.168866
2001-01-02 -0.273377
2001-01-03 0.094258
2001-01-04 -0.979666
2001-01-05 0.947706
2001-01-06 0.666709
2001-01-07 0.451145
2001-01-08 -0.301992
2001-01-09 0.272385
2001-01-10 -0.255775
2001-01-11 -0.321916
2001-01-12 1.894119
2001-01-13 0.582272
2001-01-14 -1.102707
2001-01-15 0.019423
...
2001-12-17 -0.243563
2001-12-18 1.757564
2001-12-19 -0.145106
2001-12-20 -0.579629
2001-12-21 -0.431069
2001-12-22 0.480805
2001-12-23 -0.651905
2001-12-24 0.702051
2001-12-25 -0.384549
2001-12-26 -1.077664
2001-12-27 -0.972768
2001-12-28 1.001220
2001-12-29 0.418016
2001-12-30 0.567361
2001-12-31 -0.811610
Freq: D, Length: 365
2001-05-01 -0.071521
2001-05-02 0.402344
2001-05-03 -0.568929
2001-05-04 0.227754
2001-05-05 0.194631
2001-05-06 -0.407669
2001-05-07 -1.407606
2001-05-08 -0.804147
2001-05-09 0.050445
2001-05-10 -0.604275
2001-05-11 0.270760
2001-05-12 0.000804
2001-05-13 -0.348938
2001-05-14 -1.626158
2001-05-15 0.084629
2001-05-16 -0.376655
2001-05-17 1.913789
2001-05-18 2.497594
2001-05-19 0.818446
2001-05-20 0.067115
2001-05-21 -0.993827
2001-05-22 0.940616
2001-05-23 -0.951763
2001-05-24 -0.806228
2001-05-25 0.441872
2001-05-26 0.067010
2001-05-27 -1.903360
2001-05-28 -0.400990
2001-05-29 0.257146
2001-05-30 0.785503
2001-05-31 -1.129024
Freq: D
2011-01-07 0.075132
2011-01-08 -0.985630
2011-01-10 -0.622707
2011-01-12 -1.356095
2011-01-07 0.075132
2011-01-08 -0.985630
2011-01-10 -0.622707
This is time and localtime
time.time(): 1450362054.149000
time.struct_time(tm_year=2015, tm_mon=12, tm_mday=17, tm_hour=22, tm_min=20, tm_sec=54, tm_wday=3, tm_yday=351, tm_isdst=0)
Thu Dec 17 22:20:54 2015
2015-12-17 22:20:54
over
2011-01-02 -0.772858
2011-01-05 -0.908074
2011-01-07 0.075132
2011-01-08 -0.985630
Colorado Texas New York Ohio
2001-05-02 0.303341 0.026978 -0.036389 0.463034
2001-05-09 -1.573227 -0.283074 -0.882382 -1.207936
2001-05-16 1.520804 -0.838297 0.725690 1.240092
2001-05-23 1.297194 -0.516198 -0.022075 -0.876630
2001-05-30 -1.629426 1.022547 -0.131823 -0.621269
[Finished in 0.7s]