matlab自相关函数_随机过程中的相关函数的作用

先看问题:

(1)为什么在分析随机过程的时候,得到随机过程的自相关函数就终止了,不再继续往下走了?

(2)考虑随机过程

,可以计算自相关函数为
,样本函数为
值确定之后的每一个三角函数,为什么?

1、得到自相关函数之后能做什么

自相关函数得到之后,自然可以得到

时刻之间的相关矩阵。从而,可以对
时刻的随机变量进行多元相关性分析。

主要有:去相关,PCA(主成分分析),ICA(独立主成分分析)

进行多元相关性分析之后,便可以对整个样本函数进行分析了。

2、

对随机过程的认识,需要从两个方向进行。一个是随机变量

一个是时间
。以第二个问题中的随机过程为例,可以在Matlab中做出如下图形:

ca129d4ada5f33a4df3eaa2338da8f27.png

图中,无论是纵向切,还是横向切,都会得到一个有相位差的正弦函数。垂直于theta轴切得到样本函数。垂直于t轴切得到t时刻的随机变量。

根据

这个随机过程的自相关函数
可以知道,当
时,自相关函数为零。也就是说,
不相关。可以将他们在matlab中画出来:

16ca8756e258ef7ae60609fa1616bdd9.png

可见它们是一个圆的形状。这意味着他们的平方项是线性相关的,即

是不为零的。

3、为什么θ确定之后,就会确定一个样本函数,即一个带相位差的正弦函数

考虑

,可以知道,虽然
本身不是线性相关的,但他们的平方却是线性相关的。因此,在t时刻X(t)取一个值时,通过这个平方和等于1的关系,必定可以确定一个
时刻的随机变量的值。再考虑t与s不是相差
的情形,他们之间是存在微弱的线性相关关系的,但是更明确地,他们之间图形将不再是圆形,而是椭圆:

312af644cf962367cf268f758e904e56.png

经过这样的一个个的椭圆,我们就可以知道,当在t时刻的随机变量确定之后,下一个时刻的随机变量的取值是什么了。也就确定了一个样本轨道。

对于例子中的随机过程,样本函数就是一个带相位差的正弦函数。

4、条件分布

更直接理论化的,可以去证明,条件分布

确定为一个值后,
取另一个值的概率为1。从而得到样本函数。
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页