python两张图在一张上面_检测两张图片之间的相似点然后叠加它们(Python)

我有两张相同神经切割的图片,深度略有不同,每个切片上使用不同的染料进行染色.我想覆盖这两个图像,但它们在幻灯片/照片上没有完全对齐,只是为了做到这一点.我想要做的是编写代码,检测两个切片之间的相似形状(即相同的单元格),然后根据这些单元格的位置覆盖图片.有没有办法做到这一点?

我到目前为止的代码是:

import matplotlib

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import numpy as nb

from skimage import data, io, filters

import skimage.io

from PIL import Image

from scipy import misc

import numpy as np

from skimage.transform import resize

%matplotlib inline

picture1 = "Images/294_R_C3_5" # define your image pathway

i1 = Image.open(picture1 + ".jpg").convert('L') # open your first image and convert it to greyscale

i1 = i1.point(lambda p: p * 5) # brighten the image

region=i1.crop((600,0, 4000, 4000)) # crop the image

region.save(picture1 + ".png", "PNG") # save the cropped image as a PNG

i1 = matplotlib.image.imread(picture1 + ".png", format=None) # print the new cropped image

io.imshow(i1)

io.show()

I1 = Image.open(picture1 + ".png") # reopen your image using a different module

I1

picture2 = "Images/294_R_B3_6" #define your image pathway

i2 = Image.open(picture2 + ".jpg").convert('L') # open your second image and convert it to greyscale

i2 = i2.point(lambda p: p * 5)

region=i2.crop((600,0, 4000, 4000)) # crop the image

region.save(picture2 + ".png", "PNG") # save the cropped image as a PNG

i2 = matplotlib.image.imread(picture2 + ".png", format=None) # print the new cropped image

io.imshow(i2)

io.show()

I2 = Image.open(picture2 + ".png") # open your image using a different module

I2

我尝试过使用skimage,但似乎它收集了太多积分.另外,我不知道如何根据这些点堆叠图像.这是我的代码:

from skimage.feature import ORB

orb = ORB(n_keypoints=800, fast_threshold=0.05)

orb.detect_and_extract(i1)

keypoints1 = orb.keypoints

descriptors1 = orb.descriptors

orb.detect_and_extract(i2)

keypoints2 = orb.keypoints

descriptors2 = orb.descriptors

from skimage.feature import match_descriptors

matches12 = match_descriptors(descriptors1, descriptors2, cross_check=True)

from skimage.feature import plot_matches

fig, ax = plt.subplots(1, 1, figsize=(12, 12))

plot_matches(ax, i1, i2, keypoints1, keypoints2, matches12)

ax.axis('off');

然后我尝试将它清理一下,但这比我想要的要多得多:

from skimage.transform import ProjectiveTransform

from skimage.measure import ransac

src = keypoints1[matches12[:, 0]][:, ::-1]

dst = keypoints2[matches12[:, 1]][:, ::-1]

module_robust12, inliers12 = ransac((src, dst), ProjectiveTransform, min_samples=4, residual_threshold=1, max_trials=300)

fig, ax = plt.subplots(1, 1, figsize=(12, 12))

plot_matches(ax, i1, i2, keypoints1, keypoints2, matches12[inliers01])

ax.axis('off');

有任何想法吗?谢谢.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值