python解二元方程组_用python求解多元多项式方程组

编辑:我从中得到的参考方程中包含了几个错误。我已经修好了。现在解决方案可能真的有意义了!

当两层流体在地形上流动时,存在一个数

取决于流动的相对大小

速度和流体中的波速。在

它们被称为“超临界”、“次临界”和“临界”(即

前两个我在这里称之为“额外关键”)。在

以下方程式定义了临界点之间的边界线

(h,U0)参数空间中的超临界行为:

我想消除d_1c(即我不在乎它是什么)并找到

这些方程的解。在

简化因素:我只需要给定的答案

我不需要精确的解,只需要一个解的概要

曲线,所以这可以通过解析或数值求解。在

我只想在区域(h,U0)=(0,0)到(0.5,1)上绘制。在

我想用热情中可用的模块来解决这个问题

分发(numpy,scipy,sympy),但真的不知道该去哪里

开始。它的消除变量d1c真正混淆

我。在

以下是python中的方程式:def eq1(h, U0, d1c, d0=0.1):

f = (U0) ** 2 * ((d0 ** 2 / d1c ** 3) + (1 - d0) ** 2 / (1 - d1c - d0) ** 3) - 1

return f

def eq2(h, U0, d1c, d0=0.1):

f = 0.5 * (U0) ** 2 * ((d0 ** 2 / d1c ** 2) - (1 - d0) ** 2 / (1 - d1c - d0) ** 2) + d1c + (h - d_0)

return f

我期望有一个解决方案,它有许多解决方案分支(不是

总是身体上的,但不用担心),看起来很粗糙

像这样:

我如何着手实施这一点?在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值