编辑:我从中得到的参考方程中包含了几个错误。我已经修好了。现在解决方案可能真的有意义了!
当两层流体在地形上流动时,存在一个数
取决于流动的相对大小
速度和流体中的波速。在
它们被称为“超临界”、“次临界”和“临界”(即
前两个我在这里称之为“额外关键”)。在
以下方程式定义了临界点之间的边界线
(h,U0)参数空间中的超临界行为:
我想消除d_1c(即我不在乎它是什么)并找到
这些方程的解。在
简化因素:我只需要给定的答案
我不需要精确的解,只需要一个解的概要
曲线,所以这可以通过解析或数值求解。在
我只想在区域(h,U0)=(0,0)到(0.5,1)上绘制。在
我想用热情中可用的模块来解决这个问题
分发(numpy,scipy,sympy),但真的不知道该去哪里
开始。它的消除变量d1c真正混淆
我。在
以下是python中的方程式:def eq1(h, U0, d1c, d0=0.1):
f = (U0) ** 2 * ((d0 ** 2 / d1c ** 3) + (1 - d0) ** 2 / (1 - d1c - d0) ** 3) - 1
return f
def eq2(h, U0, d1c, d0=0.1):
f = 0.5 * (U0) ** 2 * ((d0 ** 2 / d1c ** 2) - (1 - d0) ** 2 / (1 - d1c - d0) ** 2) + d1c + (h - d_0)
return f
我期望有一个解决方案,它有许多解决方案分支(不是
总是身体上的,但不用担心),看起来很粗糙
像这样:
我如何着手实施这一点?在