北师大八年级下册第三章
图形的平移与旋转
知识点总结
注:点击链接即可观看相关视频课进一步学习
【图形的平移】
1、定义
在平面内,将一个物体沿着某个方向移动一定的距离,这样的图形运动成为平移。
2、平移的要素
平移方向、平移距离
3、平移的基本性质
(1)经过平移,只改变图形位置,图形的形状和大小不变;
(2)经过平移,对应点所连的线段平行(或在一条直线上)且相等;
(3)经过平移,对应线段平行(或在一条直线上)且相等,对应角相等。
4、平移作图
(1)先找出画图的条件、已知图形中的关键点
(2)根据平移基本性质作关键点平移后的对应点
(3)按原来的方式将对应点连接成图形
5、平移坐标变化
原图中的点(x,y)
(1)左右平移:向左平移n个单位后坐标:(x-n , y)
向右平移n个单位后坐标:(x+n , y)
(2)上下平移:向上平移n个单位后坐标:(x , y+n)
向右平移n个单位后坐标:(x , y-n)
(3)一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来图形平移一次得到的。
【图形的旋转】
1、定义
在平面内,将一个图形按某个方向转动一个角度这样的图形运动称为旋转。这个定点称为旋转中心,转动的角称为旋转角。
2、基本要素
旋转中心、旋转方向、旋转角
3、基本性质
(1)经过旋转,图形的形状和大小不变;对应边相等,对应角相等。
(2)任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
4、旋转作图
(1)先找出画图的条件、已知图形中的关键点
(2)根据旋转基本性质作关键点旋转后的对应点
(3)按原来的方式将对应点连接成图形
【中心对称】
1、中心对称定义
如果把一个图形绕着某一点旋转180度,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。这个点叫做它们的对称中心。两个图形中的对应点叫做对称点。
2、基本性质
成中心对称的两个图形是全等形
成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分。
逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
3、中心对称图形
把一个图形绕某个点旋转180度,如果旋转后的图形能与原来的图形重合,那么这个图形称为中心对称图形。
4、成中心对称和中心对称图形
(1)区别:成中心对称是两个图形
中心对称图形是一个图形
(2)共同点:对应点所连线段经过对称中心,且被对称中心平分
5、作成中心对称的几何图形的方法 (1)寻找关键点 (2)根据中心对称的性质作出关键点的对称点 (3)连线 (4)说明 6、寻找对称中心的方法 (1)对称点的中点 (2)两组对称点连线的交点 7、【图案设计】
1、步骤:
(1)确定基本图形
(2)观察基本图形与其他图形的关系(平移、旋转、轴对称)
2、文字表述形式
(1)旋转:本图形可以由 基本图形顺(逆)时针旋转 次得到,旋转角为
度。
(2)平移:本图形可以由 基本图形沿 方向,移动 距离,移动 次得到。
(3)轴对称:本图形可以由 基本图形以 为对称轴对称得到。