altium 旋转线段_图形的平移与旋转知识点总结

本文总结了北师大八年级下册第三章图形变换的核心知识点,包括图形的平移、旋转及中心对称的概念、性质和作图方法。通过具体实例帮助学生理解和掌握图形变换的基本原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

北师大八年级下册第三章

图形的平移与旋转

知识点总结

注:点击链接即可观看相关视频课进一步学习

【图形的平移】

1、定义

在平面内,将一个物体沿着某个方向移动一定的距离,这样的图形运动成为平移。

2、平移的要素

平移方向、平移距离

3、平移的基本性质

(1)经过平移,只改变图形位置,图形的形状和大小不变;

(2)经过平移,对应点所连的线段平行(或在一条直线上)且相等;

(3)经过平移,对应线段平行(或在一条直线上)且相等,对应角相等。

4、平移作图

(1)先找出画图的条件、已知图形中的关键点

(2)根据平移基本性质作关键点平移后的对应点

(3)按原来的方式将对应点连接成图形

5、平移坐标变化

原图中的点(x,y)

(1)左右平移:向左平移n个单位后坐标:(x-n , y)

                         向右平移n个单位后坐标:(x+n , y)

(2)上下平移:向上平移n个单位后坐标:(x , y+n)

                         向右平移n个单位后坐标:(x , y-n)

(3)一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来图形平移一次得到的。

【图形的旋转】

1、定义

在平面内,将一个图形按某个方向转动一个角度这样的图形运动称为旋转。这个定点称为旋转中心,转动的角称为旋转角。

2、基本要素

旋转中心、旋转方向、旋转角

3、基本性质

(1)经过旋转,图形的形状和大小不变;对应边相等,对应角相等。

   (2)任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

4、旋转作图

(1)先找出画图的条件、已知图形中的关键点

(2)根据旋转基本性质作关键点旋转后的对应点

(3)按原来的方式将对应点连接成图形

【中心对称】

1、中心对称定义

如果把一个图形绕着某一点旋转180度,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。这个点叫做它们的对称中心。两个图形中的对应点叫做对称点。

2、基本性质

成中心对称的两个图形是全等形

成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分。

逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

3、中心对称图形

把一个图形绕某个点旋转180度,如果旋转后的图形能与原来的图形重合,那么这个图形称为中心对称图形。

4、成中心对称和中心对称图形

   (1)区别:成中心对称是两个图形

                         中心对称图形是一个图形

   (2)共同点:对应点所连线段经过对称中心,且被对称中心平分

5、作成中心对称的几何图形的方法 (1)寻找关键点 (2)根据中心对称的性质作出关键点的对称点 (3)连线 (4)说明 6、寻找对称中心的方法 (1)对称点的中点 (2)两组对称点连线的交点 7、

30a36b7efb67b9bc2e9d25a51ff702e2.png

8、

c510daab0fb462f25fb5aaf0dd1a05cc.png

【图案设计】

1、步骤:

(1)确定基本图形

(2)观察基本图形与其他图形的关系(平移、旋转、轴对称)

2、文字表述形式

(1)旋转:本图形可以由       基本图形顺(逆)时针旋转      次得到,旋转角为

        度。

(2)平移:本图形可以由        基本图形沿       方向,移动       距离,移动        次得到。

(3)轴对称:本图形可以由         基本图形以          为对称轴对称得到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值