计算机基础知识之一.ppt
3. 无符号数的表示 在无符号数据处理的过程中,如不需要设置符号位时,可用全部字长来表示数值大小。如8位无符号数的取值范围是0~255, 255=28-1 同样位数的数据在机器中,采用无符号表示或有符号表示其取值范围是不同的。 1 1 1 1 1 1 1 1 计算机基础知识之一 第一节计算机中的数制及其转换 主要内容及要求 一、理解计算机中的数制表示及其关系 二、熟练掌握各种常用几种进制数之间的转换 三、掌握二进制数的算术运算和逻辑运算 四、掌握计算机内部数据的单位、符号数的表示方法及数据的编码 1、计算机中的常用数制 数制:又称为进位计数制,即按进位制的方法进行计数 。 计数制的特点:表示数值大小的数码与它在数中的位置有关。 常用计数制:二、八、十六进制 二进制的特点:·可行性、可靠性、简易性、逻辑性 不同进制数的基本特点: 组成:0 1 (2 3 4 5 6 7 (8 9 (A B C D E F))) 进位基数:N(是几进制就是几) 加减运算规则:逢N进一,借一当N 分别以例子加以说明。 返回 不同进制数的对应关系: 2、常用数制之间的转换 1.非十进制数转换为十进制数 方法是:把各个非十进制数按权展开求和 例:(101.101)2=1×22+0×21+ 1×20+1×2-1+0×2-2+1×2-3 2.十进制数转换为非十进制数 方法是:整数部分转换采用“除N取余法”,且除到商为0为止;小数部分转换采用“乘N取整法” ,乘不尽时,到满足精度为止。(其中N为要转换的进制基数) 注意:在书写结果时整数的余数是反序写下来,小数的整数是正序写下来的。 例:(123.45)10 =(?)2 3.非十进制数之间的转换 (1)二进制数与八进制数的转换 方法是:以小数点为界,分别向左向右每三位二进制数合成一位八进制数,或每一位八进制数展成三位二进制数,不足三位者补0。 例:(423.45)8 =(?)2 (2)二进制数与十六进制数的转换 方法是:以小数点为界,分别向左向右每四位二进制数合成一位十六进制数,或每一位十六进制数展成四位二进制数,不足四位者补0。 例:(ABCD.EF)16 =(?)2 (3)八进制数与十六进制数的转换 借助于二进制数来完成 3、二进制数的算术运算 加:0+0=0 0+1=1 1+0=1 1+1=0 减:0-0=0 1-1=0 1-0=1 0-1=1 乘:0×0=0 0×1=0 1×0=0 1×1=1 除:0÷0=0 0÷1=0 1÷0 1÷1=1 例:11001.01 ÷101+10.1 ×100 数制转换小结 数制转换小结 4、二进制数的逻辑运算 基本概念:逻辑-逻辑变量-逻辑运算-逻辑函数-逻辑电路-逻辑表达式 三种基本逻辑运算 逻辑与——若要结论成立,必须所有条件都成立。运算规则为:0·0=0 0·1=0 1·0=0 1·1=1 逻辑或——若要结论成立,在所有条件中至少有一个条件成立即可。运算规则为:0+0=0 0+1=1 1+0=1 1+1=1 逻辑非——逻辑求反。运算规则为: 基本逻辑运算举例 若:x y 求x · y, x + y及 三种基本逻辑关系的真值表表示 第二节计算机中数据的 表示方法 计算机基础知识之二 1、数据的存储单位 数据存储的最小单位:位(bit) 数据存储的最基本单位:字节(Byte) 计算机处理数据的基本单位:字(word) 各单位之间的换算关系: 1B=8bits 1KB=210B=1024B 1MB=210KB=1024KB 1GB=210MB=1024MB 字长=n倍字节数 2、符号数的表示方法 1、二进制真值:将任意进制的数转换为二进制数的形式。 2、原码:将真值写成字节的倍数,且进行最高位的符号化:正号用0表示,负号用1表示。 3、补码: (1)补码的引入:互补的两个数可以用加法来代替减法运算,如时间9=12+9=12-3,其中12是叫做模,计算机中采用的是二进制,逢二进一,因此模数为二,为了简化运算电路,将减法运算转化为加法运算,计算机内部符号数一律采用补码表示。 (2)补码的简单求得:可由原码可直接求出:正数的补码与原码相同,负数的补码是将它的原码除符号位外的其它位按位取反,并在末位加1 (3)补码的运算规则:[X±Y]补=[X]补+[±Y]补 注意:在进行补码运算时,一定注不要超出计算机所表示数的范围: 8位机 无符号数