python信号采样_python中resample函数实现重采样和降采样代码

本文介绍了Python中用于时间序列分析的resample函数,包括降采样(如按周求和)和重采样(如7小时频率的填充方法)。通过实例展示了closed、label参数的影响,并探讨了不同填充方法如asfreq、ffill和bfill的应用。
摘要由CSDN通过智能技术生成

函数原型

resample(self, rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=‘start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)

比较关键的是rule,closed,label下面会随着两个用法说明

降采样

对时间数据细粒度增大,可以把每天的数据聚合成一周,可以求和或者均值的方式进行聚合

下面给出列子

times=pd.date_range('20180101',periods=30)

ts=pd.Series(np.arange(1,31),index=times)

ts

2018-01-01 1

2018-01-02 2

2018-01-03 3

2018-01-04 4

2018-01-05 5

2018-01-06 6

2018-01-07 7

2018-01-08 8

2018-01-09 9

2018-01-10 10

2018-01-11 11

2018-01-12 12

2018-01-13 13

2018-01-14 14

2018-01-15 15

2018-01-16 16

2018-01-17 17

2018-01-18 18

2018-01-19 19

2018-01-20 20

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值