随机种子来自系统时钟,确切的说,是来自计算机主板上的定时、计数器在内存中的技术。
随机数是由随机种子根据一定的计算方法计算出来的数值,这样说计算机的随机数是伪随机。
random.seed( 10 )
10 只是一个标志码
import numpy as np
a = np.arange(1, 25, dtype=float)
np.random.seed(2018)
c1 = np.random.choice(a, size=(3, 4))
print(c1)
np.random.seed(2018)
c2 = np.random.choice(a, size=(3, 4))
print(c2)
每次选择的数是一样的。
[[ 7. 3. 10. 22.]
[21. 7. 24. 12.]
[16. 12. 23. 7.]]
[[ 7. 3. 10. 22.]
[21. 7. 24. 12.]
[16. 12. 23. 7.]]
time.process_time():返回当前进程处理器运行时间(不包括sleep时间) 时间单位:ms
深度学习算法都使用向量化的矩阵运算,而不知for循环,时间差会达到400倍、虽然效果一样。
在解决大量数据问题时Theano可以和c实现参不多的性能。
张量是Theano的核心,张量(Tensor)可以是标量(Scalar)、向量(Vector)、矩阵(Matrix)等统称
符号计算图模型
1.定义符号变量
2.编译代码
3.执行代码(代入数据)
所有的符号计算模型都是遵照以上的模型。比如:Theano,Tensorflow,keras等等
矩阵计算的前提是广播,
广播的前提是两个矩阵列数相同。
矩阵是方正的时候用特征值分解矩阵,
矩阵不是方阵的时候用奇异值分解矩阵。
python3 关于print的问题
print("ewwqqwewq%sdsadsadasdsa%s" % (2, 3))
ewwqqwewq2dsadsadasdsa3