ck+数据集_人脸表情识别实现 文末附代码和数据

本文介绍了使用深度学习,特别是卷积神经网络(CNN),在CK+、FER2013和JAFFE数据集上进行人脸表情识别的项目。通过对比传统方法如LBP和Gabor,CNN在识别准确率上表现出优越性。项目提供了GUI界面和摄像头实时检测功能,并详细描述了训练和应用过程。
摘要由CSDN通过智能技术生成

概述:

        该项目使用卷积神经网络构建,在尝试了Gabor、LBP等传统人脸特征提取方式基础上,深度模型效果显著。在FER2013、JAFFE和CK+三个表情识别数据集上进行模型评估。

环境配置:

tensorflow-gpu>=2.3.1

numpy

opencv-python

pandas

scipy

tqdm

matplotlib

pillow

pyqt5

sklearn

scikit-image

dlib==19.6.1

jupyter

项目说明:

传统方法

    数据预处理

          图片降噪

          人脸检测(HAAR分类器检测(opencv))

    特征工程

          人脸特征提取

          LBP

          Gabor

    分类器

            SVM

深度方法

    人脸检测

          HAAR分类器

          MTCNN(效果更好)

    卷积神经网络

          用于特征提取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值