服务器上装的hadoop系统,安装hadoop正式环境步骤(三台服务器)

安装hadoop步骤: (非生产环境本机配置)

1.解压

cd /opt/software

tar -zxvf hadoop-2.7.5.tar.gz -C /opt/server/

cd /opt/server/hadoop-2.7.5/etc/hadoop

node1

node2

node3

zookeeper

zk

zk

zk

HDFS

JournalNode

JournalNode

JournalNode

NameNode

NameNode

ZKFC

ZKFC

DataNode

DataNode

DataNode

YARN

ResourceManager

ResourceManager

NodeManager

NodeManager

NodeManager

MapReduce

JobHistoryServer

修改:

core-site.xml

ha.zookeeper.quorum

node1:2181,node2:2181,node3:2181

fs.defaultFS

hdfs://ns

hadoop.tmp.dir

/export/server/hadoop-2.7.5/data/tmp

fs.trash.interval

10080

hdfs-site.xml

dfs.nameservices

ns

dfs.ha.namenodes.ns

nn1,nn2

dfs.namenode.rpc-address.ns.nn1

node1:8020

dfs.namenode.rpc-address.ns.nn2

node2:8020

dfs.namenode.servicerpc-address.ns.nn1

node1:8022

dfs.namenode.servicerpc-address.ns.nn2

node2:8022

dfs.namenode.http-address.ns.nn1

node1:50070

dfs.namenode.http-address.ns.nn2

node2:50070

dfs.namenode.shared.edits.dir

qjournal://node1:8485;node2:8485;node3:8485/ns1

dfs.client.failover.proxy.provider.ns

org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider

dfs.ha.fencing.methods

sshfence

dfs.ha.fencing.ssh.private-key-files

/root/.ssh/id_rsa

dfs.journalnode.edits.dir

/export/server/hadoop-2.7.5/data/dfs/jn

dfs.ha.automatic-failover.enabled

true

dfs.namenode.name.dir

file:///export/server/hadoop-2.7.5/data/dfs/nn/name

dfs.namenode.edits.dir

file:///export/server/hadoop-2.7.5/data/dfs/nn/edits

dfs.datanode.data.dir

file:///export/server/hadoop-2.7.5/data/dfs/dn

dfs.permissions

false

dfs.blocksize

134217728

yarn-site.xml(注意跟其他不同)

yarn.log-aggregation-enable

true

yarn.resourcemanager.ha.enabled

true

yarn.resourcemanager.cluster-id

mycluster

yarn.resourcemanager.ha.rm-ids

rm1,rm2

yarn.resourcemanager.hostname.rm1

node2

yarn.resourcemanager.hostname.rm2

node3

yarn.resourcemanager.address.rm1

node2:8032

yarn.resourcemanager.scheduler.address.rm1

node2:8030

yarn.resourcemanager.resource-tracker.address.rm1

node2:8031

yarn.resourcemanager.admin.address.rm1

node2:8033

yarn.resourcemanager.webapp.address.rm1

node2:8088

yarn.resourcemanager.address.rm2

node3:8032

yarn.resourcemanager.scheduler.address.rm2

node3:8030

yarn.resourcemanager.resource-tracker.address.rm2

node3:8031

yarn.resourcemanager.admin.address.rm2

node3:8033

yarn.resourcemanager.webapp.address.rm2

node3:8088

yarn.resourcemanager.recovery.enabled

true

yarn.resourcemanager.ha.id

rm1

If we want to launch more than one RM in single node, we need this configuration

yarn.resourcemanager.store.class

org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore

yarn.resourcemanager.zk-address

node2:2181,node3:2181,node1:2181

For multiple zk services, separate them with comma

yarn.resourcemanager.ha.automatic-failover.enabled

true

Enable automatic failover; By default, it is enabled only when HA is enabled.

yarn.client.failover-proxy-provider

org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider

yarn.nodemanager.resource.cpu-vcores

2

yarn.nodemanager.resource.memory-mb

2048

yarn.scheduler.minimum-allocation-mb

1024

yarn.scheduler.maximum-allocation-mb

2048

yarn.log-aggregation.retain-seconds

2592000

yarn.nodemanager.log.retain-seconds

604800

yarn.nodemanager.log-aggregation.compression-type

gz

yarn.nodemanager.local-dirs

/export/server/hadoop-2.7.5/yarn/local

yarn.resourcemanager.max-completed-applications

1000

yarn.nodemanager.aux-services

mapreduce_shuffle

yarn.resourcemanager.connect.retry-interval.ms

2000

mapred-site.xml

mapreduce.framework.name

yarn

mapreduce.jobhistory.address

node3:10020

mapreduce.jobhistory.webapp.address

node3:19888

mapreduce.jobtracker.system.dir

/export/server/hadoop-2.7.5/data/system/jobtracker

mapreduce.map.memory.mb

1024

mapreduce.reduce.memory.mb

1024

mapreduce.task.io.sort.mb

100

mapreduce.task.io.sort.factor

10

mapreduce.reduce.shuffle.parallelcopies

15

yarn.app.mapreduce.am.command-opts

-Xmx1024m

yarn.app.mapreduce.am.resource.mb

1536

mapreduce.cluster.local.dir

/export/server/hadoop-2.7.5/data/system/local

slaves

node1

node2

node3

hadoop-env.sh

export JAVA_HOME=/export/server/jdk1.8.0_241

启动命令:

#一台机器执行以下命令:

cd /export/server

scp -r hadoop-2.7.5/ node2:$PWD

scp -r hadoop-2.7.5/ node3:$PWD

#只发XML就可以了

scp -r * node2:$PWD

#台机器上共同创建目录

#台机器执行以下命令

mkdir -p /export/server/hadoop-2.7.5/data/dfs/nn/name

mkdir -p /export/server/hadoop-2.7.5/data/dfs/nn/edits

#改node3的rm2

#二台机器执行以下命令

vim yarn-site.xml

#在node2上配置rm1,在node3上配置rm2,注意:一般都喜欢把配置好的文件远程复制到其它机器上,

#这个在YARN的另一个机器上一定要修改,其他机器上不配置此项

#意我们现在有两个resourceManager 第二台是rm1 第三台是rm2

#个配置一定要记得去node3上面改好

#property>

#yarn.resourcemanager.ha.id

#rm2

# If we want to launch more than one RM in single node, we need this #onfiguration

#/property>

#zookeeper start

/export/server/zookeeper-3.4.6/bin/zkServer.sh start

#node1机器执行以下命令

cd /export/server/hadoop-2.7.5

bin/hdfs zkfc -formatZK

sbin/hadoop-daemons.sh start journalnode

bin/hdfs namenode -format

bin/hdfs namenode -initializeSharedEdits -force

sbin/start-dfs.sh

#node2上面执行

cd /export/server/hadoop-2.7.5

bin/hdfs namenode -bootstrapStandby

sbin/hadoop-daemon.sh start namenode

#启动yarn过程

node2上执行

cd /export/server/hadoop-2.7.5

sbin/start-yarn.sh

#node3上面执行

cd /export/server/hadoop-2.7.5

sbin/start-yarn.sh

#查看resourceManager状态

#node2上面执行

cd /export/server/hadoop-2.7.5

bin/yarn rmadmin -getServiceState rm1

#node3上面执行

cd /export/server/hadoop-2.7.5

bin/yarn rmadmin -getServiceState rm2

#node3启动jobHistory

#node3机器执行以下命令启动jobHistory

cd /export/server/hadoop-2.7.5

sbin/mr-jobhistory-daemon.sh start historyserver

#hdfs状态查看

#node1机器查看hdfs状态

http://192.168.88.161:50070/dfshealth.html

#tab-overview

#node2机器查看hdfs状态

http://192.168.88.162:50070/dfshealth.html

#tab-overview

#yarn集群访问查看

http://192.168.88.163:8088/cluster

#历史任务浏览界面

#页面访问:

http://192.168.88.163:19888/jobhistory

#当nameNode选举机制不启动时候,在LINUX执行此命令添加插件

yum -y install psmisc

ha.zookeeper.quorum

192.168.1.80:2181,192.168.1.81:2181,192.168.1.82:2181

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>