python批量生成图像标签_从大量图像(*.jpg)和标签(*.mat)生成tensorflow数据集...

我找到了一种使用tf.data.from_generator来完成它的方法

我发现的诀窍是生成两个单独的数据集(一个用于mat文件,一个用于jpg文件),然后使用tf.data.Dataset.zip将它们组合起来

其工作原理如下:mat_dataset = tf.data.Dataset.from_generator(read_mat_file, tf.int64)

def read_mat_file():

while True:

with open('mat_addresses.txt', 'r') as input_:

for line in input_:

# open file and extract info from it as np.array

yield tuple(label) # why tuple? https://github.com/tensorflow/tensorflow/issues/13101

为了获得下一批产品,只需:

^{pr2}$

但是,可以将img_dataset与{}组合,如下所示:img_dataset = tf.data.TextLineDataset('img_addresses.txt').map(read_img)

def read_img(path):

image_string = tf.read_file(path)

image_decoded = tf.image.decode_jpeg(image_string, channels=3)

return image_decoded

dataset = tf.data.Dataset.zip((mat_dataset, img_dataset))

现在,像前面提到的下一批。在

与feed_dict相比,我不知道代码的工作效率有多高

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值