我找到了一种使用tf.data.from_generator来完成它的方法
我发现的诀窍是生成两个单独的数据集(一个用于mat文件,一个用于jpg文件),然后使用tf.data.Dataset.zip将它们组合起来
其工作原理如下:mat_dataset = tf.data.Dataset.from_generator(read_mat_file, tf.int64)
def read_mat_file():
while True:
with open('mat_addresses.txt', 'r') as input_:
for line in input_:
# open file and extract info from it as np.array
yield tuple(label) # why tuple? https://github.com/tensorflow/tensorflow/issues/13101
为了获得下一批产品,只需:
^{pr2}$
但是,可以将img_dataset与{}组合,如下所示:img_dataset = tf.data.TextLineDataset('img_addresses.txt').map(read_img)
def read_img(path):
image_string = tf.read_file(path)
image_decoded = tf.image.decode_jpeg(image_string, channels=3)
return image_decoded
dataset = tf.data.Dataset.zip((mat_dataset, img_dataset))
现在,像前面提到的下一批。在
与feed_dict相比,我不知道代码的工作效率有多高