顺序表的基本操作代码_【算法与数据结构 03】数据处理的基本操作——增删查...

b99b2656b62e7864a3f0319b8e69af0a.png 点击上面“蓝字”关注我们  2c4d9fd761300e1173cd3b2d73fc6aea.png

在上一篇文章中,我们学习了 时空转换 的思想,而它的核心就是选择合适的数据结构,将时间复杂度向空间复杂度转换。那么该 如何选择合适的数据结构 呢?

要想灵活使用数据结构,你需要先弄清楚数据在代码中被处理、加工的最小单位动作,也就是数据结构的 基本操作,有了这些动作之后,你就可以基于此去选择更合适的数据结构了。

37a17b745de5c619c1ca703da051aaae.gif


1. 举个栗子:代码对数据处理

例1:查找出一个数组中,出现次数最多的那个元素的数值。例如,输入数组 a = [1,6,3,5,5,5,6 ] 中,查找出现次数最多的数值。

这个例子我们在上一篇中已经分析过。使用 字典 的数据结构能使时间复杂度降低到O(n),那究竟是什么让我们选择字典呢?下面仔细来聊一聊。

我们先看一下这个任务需要对数据进行哪些操作。我们在解这个题时,核心思路应该是:

第一步,根据原始数组计算每个元素出现的次数;

第二步,根据第一步的结果,找到出现次数最多的元素。

(1)对于上面的第一步,可以提取出的基本数据操作有:

查找:看能否在数据结构中查找到这个元素,也就是判断元素是否出现过。

新增:针对没有出现过的情况,新增这个元素。

改动:针对出现过的情况,需要对这个元素出现的次数加 1。

(2)对于上面的第二步,可以提取出的基本数据操作有:

查找:访问数据结构中的每个元素,找到次数最多的元素。

由此可见,本任务会 重复使用到查找。而能在 O(1) 的时间复杂度内完成查找动作的数据结构,只有字典类型。因此选择字典结构可能会比其他数据结构效率更高,事实也是如此。

注:此题解法可参考:【算法与数据结构 02】选择合适的数据结构——将昂贵的“时间”转换为廉价的“空间”

2. 数据处理的基本操作

设计合理的数据结构,要从问题本身出发,我们可以采用这样的思考顺序

(1) 分析这段代码到底对数据先后进行了哪些操作。

(2) 根据分析出来的数据操作,找到合理的数据结构。

这样我们就把数据处理的基本操作梳理了出来。今后,即使你遇到更复杂的问题,无非就是这些 基本操作的叠加和组合。只要按照上述的逻辑进行思考,就可以 轻松设计出合理的数据结构!

数据处理的操作就是找到需要处理的数据,计算结果,再把结果保存下来。这个过程总结为以下操作:

(1) 找到要处理的数据。这就是按照某些条件进行查找。

(2) 把结果存到一个新的内存空间中。这就是在现有数据上进行新增。

(3) 把结果存到一个已使用的内存空间中。这需要先删除内存空间中的已有数据,再新增新的数据。

3. 方法论

经过对问题的拆解,你会发现即便是很复杂的代码,它对数据的处理也只有这 3 个基本操作,增、删、查。只要围绕这 3 个数据处理的操作进行分析,就能选择出合适的方案。总结下来,我们在思考代码优化时,可以从以下三个问题入手:

(1) 这段代码对数据进行了哪些操作?

(2) 这些操作中,哪个操作最影响效率,对时间复杂度的损耗最大?

(3) 哪种数据结构最能帮助你提高数据操作的使用效率?

对于前面两个问题,围绕数据处理的基本操作,这可以通过 刷题 加深我们的理解。对于第3个问题,就需要我们去掌握相应的数据结构 基础知识,这个我在后面也会逐渐整理出来。

创作不易,点个在看再走吧 e7a1d8a28c102ad54ff3f8db5b5c6f3d.png
已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页