gephi生成网络关系图_生物信息工具 | 如何绘制“上流”的共发生网络图?

本文详细介绍了如何使用R语言处理OTU绝对丰度表,计算相关系数,生成graphml格式网络图文件,并使用Gephi进行网络图的绘制和个性化调整。重点内容包括数据过滤、相关系数计算、网络图生成和使用igraph及Gephi的绘图技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a0c8e200a26aab82d5356223301a816a.png

| 撰文:莫北

在之前《如何用Gephi绘制漂亮的网络图》一文中,已经为大家介绍过如何使用Gephi绘制下图这样的共发生网络图(Co-occurrence network),该文主要是介绍通过准备“边文件”和“点文件”来创建网络图。

37e1b636266a97fcee2edbe5917f4553.png

但有时候绘图比较容易,难的是准备数据。

前文也提过,最常见的共发生网络分析过程是先计算相关系数矩阵,接着使用igraph生成gml格式的网络图文件,最后导入Gephi对网络图进行个性化绘制。

当然,如果你不愿使用R语言计算,也可以使用OmicShare Tools中的组内相关性分析工具计算得到相关系数矩阵,然后整理成“边文件”,使用Gephi或Cytoscape做个性化绘图。

05ba9f7410343cbf9befdc5e26c4d4b9.png

工具网址: https://www.omicshare.com/tools/

但如果数据量较大,手工整理显然非常费时费力,有OmicShare用户在OmicShare Forum中留言:“数据的准备太难了!”

因此,下面我将从最初的OTU绝对丰度表开始,介绍如何使用R语言进行网络图数据的准备、网络图文件生成和网络图绘制。

本文的重点内容是数据的过滤、相关系数的计算和“graphml”格式网络图文件的生成。


数据导入与过滤

为了便于大家练习使用,本文所用到的范例数据已上传到OmicShare论坛上,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值