flink 自定义 窗口_Flink 核心原理 0446

4b5cc72978539b68798c155dc4011eb6.png

核心原理

Apache Flink 之所以能越来越受欢迎,我们认为离不开它最重要的四个基石:Checkpoint、State、Time、Window。

Window&Time

Window

Flink 中 Window 可以将无限流切分成有限流,是处理有限流的核心组件,现在Flink 中 Window 可以是时间驱动的(Time Window),也可以是数据驱动的(Count Window),如下图所示:

54f732c36d8b8f6e63327532aa01a02b.png

上图中,基于时间的窗口操作,在每个相同的时间间隔对Stream中的记录进行处理,通常各个时间间隔内的窗口操作处理的记录数不固定;而基于数据驱动的窗口操作,可以在Stream中选择固定数量的记录作为一个窗口,对该窗口中的记录进行处理。

窗口类型:

  • tumbling window(滚动窗口):窗口间的元素无重复
一个翻滚窗口分配器的每个数据元分配给指定的窗口的窗口大小。翻滚窗具有固定的尺寸,不重叠。例如,如果指定大小为5分钟的翻滚窗口,则将评估当前窗口,并且每五分钟将启动一个新窗口

c0821fe24f76f5dacb7146d3bddaa529.png
  • sliding window(滑动窗口):窗口间的元素可能重复
该滑动窗口分配器分配元件以固定长度的窗口。与翻滚窗口分配器类似,窗口大小由窗口大小参数配置。附加的窗口滑动参数控制滑动窗口的启动频率。因此,如果幻灯片小于窗口大小,则滑动窗口可以重叠。在这种情况下,数据元被分配给多个窗口。
例如,您可以将大小为10分钟的窗口滑动5分钟。有了这个,你每隔5分钟就会得到一个窗口,其中包含过去10分钟内到达的事件

53688ab61ee8dae47bbba09208a889d7.png
  • session window(会话窗口)
在会话窗口中按活动会话分配器组中的数据元。与翻滚窗口和滑动窗口相比,会话窗口不重叠并且没有固定的开始和结束时间。相反,当会话窗口在一段时间内没有接收到数据元时,即当发生不活动的间隙时,会关闭会话窗口。会话窗口分配器可以配置静态会话间隙或 会话间隙提取器函数,该函数定义不活动时间段的长度。当此期限到期时,当前会话将关闭,后续数据元将分配给新的会话窗口。

00bb20eb47a7842719868b66b447d6d9.png
  • global window(全局窗口)
一个全局性的窗口分配器分配使用相同的Keys相同的单个的所有数据元全局窗口。此窗口方案仅在您还指定自定义触发器时才有用。否则,将不执行任何计算,因为全局窗口没有我们可以处理聚合数据元的自然结束。

a88c02ed58ab29379e98768225388342.png


参考:
window:http://flink.iteblog.com/dev/windows.html

Time

Time的分类

ca74ee3677d1e82918b00c05e0206f33.png
  • Event-Time :事件时间是每个事件在其生产设备上发生的时间。此时间通常在进入Flink之前嵌入记录中,并且 可以从每个记录中提取该事件时间戳。
  • Ingestion-Time :摄取时间是事件进入Flink的时间。在源算子处,每个记录将源的当前时间作为时间戳,并且基于时间的 算子操作(如时间窗口)引用该时间戳。
  • Processing-Time : 处理时间是指执行相应算子操作的机器的系统时间。

引入Watermark的背景?

主要解决延迟数据

我们可以考虑一个这样的例子:某 App 会记录用户的所有点击行为,并回传日志(在网络不好的情况下,先保存在本地,延后回传)。A 用户在 11:02 对 App 进行操作,B 用户在 11:03 操作了 App,但是 A 用户的网络不太稳定,回传日志延迟了,导致我们在服务端先接受到 B 用户 11:03 的消息,然后再接受到 A 用户 11:02 的消息,消息乱序了。

那我们怎么保证基于 event-time 的窗口在销毁的时候,已经处理完了所有的数据呢?这就是 watermark 的功能所在。watermark 会携带一个单调递增的时间戳 t,watermark(t) 表示所有时间戳不大于 t 的数据都已经到来了,未来不会再来,因此可以放心的触发和销毁窗口了。

什么是Watermark?
Watermark是Apache Flink为了处理EventTime 窗口计算提出的一种机制,本质上也是一种时间戳,由Apache Flink Source或者自定义的Watermark生成器按照需求Punctuated或者Periodic两种方式生成的一种系统Event,与普通数据流Event一样流转到对应的下游算子,接收到Watermark Event的算子以此不断调整自己管理的EventTime clock。

乱序流中Watermark的工作示意图:

78417e45c04ff283f696c13be4a5b193.png

并行流中的Watermarks的工作示意图:

3ff1a3d34a5d44ede685bc7804cdc153.png


多并行度的情况下,watermark对齐会取所有channel最小的watermark。
例如:多输入operator(union、 keyBy、 partition)的当前event time是其输入流event time的最小值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值