python怎么输入矩阵_Python中的矩阵操作

本文介绍了如何使用NumPy进行矩阵创建、数学运算、内置操作、索引与拆分等,并展示了如何合并矩阵及改变矩阵形状的方法。

Numpy

通过观察Python的自有数据类型,我们可以发现Python原生并不提供多维数组的操作,那么为了处理矩阵,就需要使用第三方提供的相关的包。

NumPy 是一个非常优秀的提供矩阵操作的包。NumPy的主要目标,就是提供多维数组,从而实现矩阵操作。

NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes.

基本操作

#######################################

# 创建矩阵

#######################################

from numpy import array as matrix, arange

# 创建矩阵

a = arange(15).reshape(3,5)

a

# Out[10]:

# array([[0., 0., 0., 0., 0.],

# [0., 0., 0., 0., 0.],

# [0., 0., 0., 0., 0.]])

b = matrix([2,2])

b

# Out[33]: array([2, 2])

c = matrix([[1,2,3,4,5,6],[7,8,9,10,11,12]], dtype=int)

c

# Out[40]:

# array([[ 1, 2, 3, 4, 5, 6],

# [ 7, 8, 9, 10, 11, 12]])

#######################################

# 创建特殊矩阵

#######################################

from numpy import zeros, ones,empty

z = zeros((3,4))

z

# Out[43]:

# array([[0., 0., 0., 0.],

# [0., 0., 0., 0.],

# [0., 0., 0., 0.]])

o = ones((3,4))

o

# Out[46]:

# array([[1., 1., 1., 1.],

# [1., 1., 1., 1.],

# [1., 1., 1., 1.]])

e = empty((3,4))

e

# Out[47]:

# array([[0., 0., 0., 0.],

# [0., 0., 0., 0.],

# [0., 0., 0., 0.]])

#######################################

# 矩阵数学运算

#######################################

from numpy import array as matrix, arange

a = arange(9).reshape(3,3)

a

# Out[10]:

# array([[0, 1, 2],

# [3, 4, 5],

# [6, 7, 8]])

b = arange(3)

b

# Out[14]: array([0, 1, 2])

a + b

# Out[12]:

# array([[ 0, 2, 4],

# [ 3, 5, 7],

# [ 6, 8, 10]])

a - b

# array([[0, 0, 0],

# [3, 3, 3],

# [6, 6, 6]])

a * b

# Out[11]:

# array([[ 0, 1, 4],

# [ 0, 4, 10],

# [ 0, 7, 16]])

a < 5

# Out[12]:

# array([[ True, True, True],

# [ True, True, False],

# [False, False, False]])

a ** 2

# Out[13]:

# array([[ 0, 1, 4],

# [ 9, 16, 25],

# [36, 49, 64]], dtype=int32)

a += 3

a

# Out[17]:

# array([[ 3, 4, 5],

# [ 6, 7, 8],

# [ 9, 10, 11]])

#######################################

# 矩阵内置操作

#######################################

from numpy import array as matrix, arange

a = arange(9).reshape(3,3)

a

# Out[10]:

# array([[0, 1, 2],

# [3, 4, 5],

# [6, 7, 8]])

a.max()

# Out[23]: 8

a.min()

# Out[24]: 0

a.sum()

# Out[25]: 36

#######################################

# 矩阵索引、拆分、遍历

#######################################

from numpy import array as matrix, arange

a = arange(25).reshape(5,5)

a

# Out[9]:

# array([[ 0, 1, 2, 3, 4],

# [ 5, 6, 7, 8, 9],

# [10, 11, 12, 13, 14],

# [15, 16, 17, 18, 19],

# [20, 21, 22, 23, 24]])

a[2,3] # 取第3行第4列的元素

# Out[3]: 13

a[0:3,3] # 取第1到3行第4列的元素

# Out[4]: array([ 3, 8, 13])

a[:,2] # 取所有第二列元素

# Out[7]: array([ 2, 7, 12, 17, 22])

a[0:3,:] # 取第1到3行的所有列

# Out[8]:

# array([[ 0, 1, 2, 3, 4],

# [ 5, 6, 7, 8, 9],

# [10, 11, 12, 13, 14]])

a[-1] # 取最后一行

# Out[10]: array([20, 21, 22, 23, 24])

for row in a: # 逐行迭代

print(row)

# [0 1 2 3 4]

# [5 6 7 8 9]

# [10 11 12 13 14]

# [15 16 17 18 19]

# [20 21 22 23 24]

for element in a.flat: # 逐元素迭代,从左到右,从上到下

print(element)

# 0

# 1

# 2

# 3

# ...

#######################################

# 改变矩阵

#######################################

from numpy import array as matrix, arange

b = arange(20).reshape(5,4)

b

# Out[18]:

# array([[ 0, 1, 2, 3],

# [ 4, 5, 6, 7],

# [ 8, 9, 10, 11],

# [12, 13, 14, 15],

# [16, 17, 18, 19]])

b.ravel()

# Out[16]:

# array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

# 17, 18, 19])

b.reshape(4,5)

# Out[17]:

# array([[ 0, 1, 2, 3, 4],

# [ 5, 6, 7, 8, 9],

# [10, 11, 12, 13, 14],

# [15, 16, 17, 18, 19]])

b.T # reshape 方法不改变原矩阵的值,所以需要使用 .T 来获取改变后的值

# Out[19]:

# array([[ 0, 4, 8, 12, 16],

# [ 1, 5, 9, 13, 17],

# [ 2, 6, 10, 14, 18],

# [ 3, 7, 11, 15, 19]])

#######################################

# 合并矩阵

#######################################

from numpy import array as matrix,newaxis

import numpy as np

d1 = np.floor(10*np.random.random((2,2)))

d2 = np.floor(10*np.random.random((2,2)))

d1

# Out[7]:

# array([[1., 0.],

# [9., 7.]])

d2

# Out[9]:

# array([[0., 0.],

# [8., 9.]])

np.vstack((d1,d2)) # 按列合并

# Out[10]:

# array([[1., 0.],

# [9., 7.],

# [0., 0.],

# [8., 9.]])

np.hstack((d1,d2)) # 按行合并

# Out[11]:

# array([[1., 0., 0., 0.],

# [9., 7., 8., 9.]])

np.column_stack((d1,d2)) # 按列合并

# Out[13]:

# array([[1., 0., 0., 0.],

# [9., 7., 8., 9.]])

c1 = np.array([11,12])

c2 = np.array([21,22])

np.column_stack((c1,c2))

# Out[14]:

# array([[11, 21],

# [12, 22]])

c1[:,newaxis] # 添加一个“空”列

# Out[18]:

# array([[11],

# [12]])

np.hstack((c1,c2))

# Out[27]: array([11, 12, 21, 22])

np.hstack((c1[:,newaxis],c2[:,newaxis]))

# Out[28]:

# array([[11, 21],

# [12, 22]])

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值