import pymysql
import sqlalchemy
from sqlalchemy import create_engine
import pandas as pd
import warnings
import numpy as np
print(pymysql.version_info)
print(sqlalchemy.__version__)
warnings.filterwarnings("ignore")
pd.set_option('display.max_rows', None) # 显示完整的行
# 建立数据库连接
# 创建连接参数
db_info = {
'user':'',
'password':'',
'host':'..',
'database':''
}
# 连接数据库的方法create_engine,这里就用了字典的格式化输出的方式
conn = create_engine('mysql+pymysql://%(user)s:%(password)s@%(host)s/%(database)s?charset=gbk' % db_info,encoding='utf-8')
# 写sql获取需要的数据
sql_cg = '''
select 商机id,估价最大值,str_to_date(创建时间,'%%Y-%%m-%%d') as 创建时间,是否为真 from

本文展示了如何使用pandas对数据进行批量处理,包括将空字符串转换为特定值,以及对数据进行聚合操作,如计算计数、中位数、众数等。示例中使用了pandas的`apply`函数和lambda表达式,以及`agg`方法进行数据处理和统计分析。
最低0.47元/天 解锁文章
512

被折叠的 条评论
为什么被折叠?



