线性赋范空间的最佳逼近(一般讨论)
定义[一般线性赋范空间的最佳逼近]
设
定义[最佳逼近的等价定义]
定理[一般线性赋范空间最佳逼近元素的存在性定理]
但是唯一性因线性空间以及线性空间上的范数的不同而不同。
特殊最佳逼近
对应于不同的线性空间以及范数和逼近函数空间
特殊的函数最佳逼近:
- 函数最佳一致逼近(
,切比雪夫范数,连续的)
- 内积空间范数逼近:常用的有两种:
1.
2.
最佳一致逼近多项式
定义[最佳一致逼近多项式——切比雪夫逼近多项式]
特点:逼近误差的最大值最小值的绝对值相等并且交替取得。
定理[最佳一致逼近多项式的特征特质]
- 逼近误差应在整个逼近区域上均匀分布,误差的最大最小值绝对值相等,符号相反,交错分布
- 函数
在上的交错点组的定义(交错点可以使函数取到最值,最大值与最小值的绝对值相等,并且最大最小值交替出现)
-
的下界估计
-
是的最佳一致逼近多项式在定义区间上存在至少个点构成的交错点组
-
那么在中唯一存在关于f的最佳一致逼近多项式
- 保证区间端点一定是交错点的推论,可利用待定系数法求低阶最佳一致逼近多项式(利用交错点为驻点的性质以及误差最大最小值相等列方程组)
与零偏差最小问题
在
定义[与零偏差最小问题]
1.线性空间
2.线性子空间
3.
求
求解首一最小偏差于零的多项式的方法:
可直接用切比雪夫多项式表示解函数
定理[首一最小偏差于零多项式的解函数]
对于
即所有n次多项式的范数都大于
定理[切比雪夫多项式性质]
1.定义:
2.递推公式:
3.幂函数系
4.在
5.切比雪夫多项式序列在[-1,1]上关于权函数
6.
内积空间的最佳逼近
两类常见的重要内机空间:
- 欧氏空间
,内积定义为:
-
内积空间,内积定义为:
下面是内积空间的共同性质:
定理[内积空间性质]
X为内积空间
1.Cauchy-Schwarz不等式
2.平行四边形等式:
定义[内积空间的最佳逼近问题]
X为内积空间,M为X的有限维子空间。
定理[内积空间有关逼近的性质]
.X为内积空间,M为X的有限维子空间
1.内积空间最佳逼近元素是唯一的
2.
3.内积空间的最佳逼近问题等价于:求
4.有限维空间正交基的存在性:任何n维内积空间M都存在正交基
最佳平方逼近与正交多项式——连续情形
还没整理的有:列举出的带权正交多项式的实例
定义[最佳平方逼近多项式的计算]
通过解有关子空间的基的线性方程组得到对应的最佳平方逼近多项式
定理[正交多项式]
if
1
2.
则,
定理[带权正交多项式的性质]
1.带权正交基有三项递推公式(78页)
2.正交多项式零点的性质:
··带权正交多项式$g_l^*(x)$有l个互异的属于
··
应用:求某函数的逼近,即chebyshev最佳平方逼近,以chebyshev多项式为基求的最佳平方逼近
数据拟合的最小二乘法——离散情形
对于
方法:连续函数逼近问题转换为离散的最佳平方逼近问题
这系列笔记是针对封面所示的课本进行重点标记而成,主要用于复习课本而做,内容省略的比较多,只是粗略的提取了要点。
由于系列笔记本来是我用LaTeX做的,在搬运时可能会有地方没有修改好。
有错误还请指正!谢谢