python直接控制显卡_在pytorch中指定显卡

1. 利用CUDA_VISIBLE_DEVICES设置可用显卡

在CUDA中设定可用显卡,一般有2种方式:

(1) 在代码中直接指定

import os

os.environ['CUDA_VISIBLE_DEVICES'] = gpu_ids

(2) 在命令行中执行代码时指定

CUDA_VISIBLE_DEVICES=gpu_ids python3 train.py

如果使用sh脚本文件运行代码,则有3种方式可以设置

(3) 在命令行中执行脚本文件时指定:

CUDA_VISIBLE_DEVICES=gpu_ids sh run.sh

(4) 在sh脚本中指定:

source bashrc

export CUDA_VISIBLE_DEVICES=gpu_ids && python3 train.py

(5) 在sh脚本中指定

source bashrc

CUDA_VISIBLE_DEVICES=gpu_ids python3 train.py

如果同时使用多个设定可用显卡的指令,比如

source bashrc

export CUDA_VISIBLE_DEVICES=gpu_id1 && CUDA_VISIBLE_DEVICES=gpu_id2 python3 train.py

那么高优先级的指令会覆盖第优先级的指令使其失效。优先级顺序为:不使用sh脚本 (1)>(2); 使用sh脚本(1)>(5)>(4)>(3)

个人感觉在炼丹时建议大家从(2)(3)(4)(5)中选择一个指定可用显卡,不要重复

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
YOLO高分设计资源源码,详情请查看资源内容使用说明 YOLO高分设计资源源码,详情请查看资源内容使用说明 YOLO高分设计资源源码,详情请查看资源内容使用说明 YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明YOLO高分设计资源源码,详情请查看资源内容使用说明

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值