使用python计算多项式在x=5的值_python与机器学习入门(5)多项式回归

多项式回归:

处理的是一些非线性问题,像一些无法用直线拟合的离散点,比方说随着工龄的增长和职位的升高而 增加的薪酬。

这样的问题,往往只有一个自变量。

多项式回归还是比较简单的

///举一个栗子///

一家企业:十个职位与对应的薪酬

这时候有一个人来你公司应聘,他已经在6职位上工作了两年多,还有几年就可以上到7职位了,你应该给他多少薪酬呢?

这种情况,我们就将他的职位按照6.5算吧。

下面这个是线性回归的预测出的结果

linr = LinearRegression()

linr.fit(X, y)

polyr = PolynomialFeatures(degree = 2)

linrr = LinearRegression()

linrr.fit(X_poly, y)

显而易见,误差是非常大的,尤其是看到了y轴上的数量级之后….

这时候让我们来用多项式回归,可以通过增加变量的最高次数,来增加拟合结果的准确性。

我们设定的多项式的最高次数是2,但是头尾两个数值的误差还是比较大的

在这个逐步调高最高次数的过程中,发现最高次是4的时候,预测出来的结果是最为准确的。

如果你觉得这个预测图不够平滑,你也可以缩减X轴每两个坐标之间的距离。

我们做一个差来大体看一下误差:

因为对于多项式回归的误差检测,这里并没有比较好的方法。由于通过提高最高次数的过程已经可以逐步的增大预测的准确率,所以这样的误差并不算大。

现在你可以给来招聘的人给出合适的工资了

跟原有的公司给出的薪酬对应表相差并不多。

源码与数据集的下载请移步:机器学习(5)-多项式回归 - CSDN博客​blog.csdn.net

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页