matlab图像处理学习笔记-数学形态与二值图像操作
数学形态学主要处理的是二值图像,因为二值图像的处理操作比较简单。
9.1 数学形态学图像处理
基本思想:利用一个称作结构元素(structuring element)的探针收集图像信息。当探针在图像中不断移动时,
便可考察图像各个部分见的相互关系,从而了解图像各个部分的结构特征。作为探针的结构元素,可直接携带只是(形态、大小以及灰度和色度信息)
来探测所研究图像的结构特点。
基本运算:数字形态学的基本运算是腐蚀和膨胀。
平移:就是将图像A平移到以b为原点的坐标系中。
反射:图像A相对于坐标原点的对称结果。
开运算:即A先被B腐蚀,再被B膨胀;
闭运算:即A先被B膨胀,再被B腐蚀;
根据开、闭运算的特点,通常可以利用开运算删除图像中的小分支,利用不运算填补图像中的空穴;
形态学的直奔运算满足以下特点:
1、膨胀和复试运算具有平移不变性,即对图像A进行复试和膨胀的结果运算只取决于A与B得结构,而与A得为之无关。
2、开运算可以使图像缩小,闭运算可以使图像增大。
9.3数学图形学的运算的基本函数
1、二值图像的膨胀运算dilate(BW,SE,alg,n),SE为一个数据结构,具体为什么,也不是特别清楚,alg=‘spatial’在空域上实现
alg=‘frequency’,在频域上实现,无论空域上实现还是频域上实现,运算结果都一样,但是对于大图像来说,运算的速度会快一些
n代表对图像进行膨胀的次数。
I=imread('rice.tif');
imshow(I);
a=ones(5);
b=dilate(I,a);
figure,imshow(b);
2、erode(bw,SE,alg,n)
此函数同dilate()函数的功能基本是一样的。
3、对图像进行指定的操作bwmorph(bw,operation,n)
bw是二值图像,operation是指定的操作,为字符串,n代表进行操作的次数
operation的可选值及其含义为:
bothat,闭包运算,即先腐蚀,再膨胀,然后减去源图像
bridge,作连接运算即将两个1中间相隔的一个0变为1;
clean,去除孤立的亮点,如
0 0 0
0 1 0
0 0 0
变为
0 0 0
0 0 0