html b5纸尺寸,b5纸的大小?

本文详细介绍了纸张的尺寸规格,包括B5和A4纸的标准尺寸以及它们的对折关系。A4纸通常被认为是16开,而B5纸则接近32开。此外,还提到了标准印刷的分辨率和不同纸张尺寸对应的像素大小,如A4的300dpi分辨率下的尺寸。内容涵盖了纸张幅面的国际标准和常见的复印纸规格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B5纸的大小是18.2cm*25.7cm,也就是说B5纸是182*257毫米 32开

B5一般有两种尺寸,EXTRA也就是标准的就是20.1cmX27.6cm

还有一种是18.2cmX25.7cm

A4纸是多少开的?这要从纸张的制作说起,纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸。过去是以多少开(例如8开或16开等)来表示纸张的大小。现在通常采用国际标准,规定以 A0、A1、A2、B1、B2......等标记来表示纸张的幅面规格。标准规定纸张的幅宽(以X表示)和长度(以Y表示)的比例关系为X:Y=1:n 。按照纸张幅面的基本面积,把幅面规格分为A系列、B系列和C系列,幅面规格为A0的幅面尺寸为841mm×1189mm,幅面面积为1平方米;B0的幅面尺寸为1000mm×1414mm,幅面面积为2.5平方米;C0的幅面尺寸为917mm×1279mm,幅面面积为2.25平方米;复印纸的幅面规格只采用A系列和B系列。若将A0纸张沿长度方式对开成两等分,便成为A1规格,将A1纸张沿长度方向对开,便成为A2规格,如此对开至A8规格;B8纸张亦按此法对开至B8规格。A0~A8和B0~B8的幅面尺寸见下表所列。其中A3、A4、A5、A6和B4、B5、B6等7种幅面规格为复印纸常用的规格。比如“A4”纸,就是将A型基本尺寸的纸折叠4次,所以一张A4纸的面积就是基本纸面积的2的4次方分之一,即1/16。其余依此类推。所以A4纸可以认为是16开了。

一般认为B5约应是接近32开吧。

至于B5纸的像素大小,要看输出的精度,一般标准印刷300dpi的A4是2480*3508,A3是4960*3508,B3是3248*4300,B4是3248*2150。

取消

评论

SegFormer 是一种先进的语义分割模型,因其高效的设计和出色的性能受到广泛关注。下面我们将详细介绍 SegFormer-B5 模型的源码复现步骤,并提供一些常见问题的解答。 --- ## **一、SegFormer简介** SegFormer是一种无需后处理操作(例如复杂的上下文模块或多尺度测试)即可直接完成像素级分类任务的轻量级神经网络结构。其核心思想是以纯Transformer Encoder为基础构建分层特征表达机制,在不牺牲精度的情况下显著降低计算成本。 其中 B系列代表不同的配置版本,B5则是容量较大的变体之一,适合高分辨率场景应用需求. --- ## **二、环境搭建** 首先需要安装Python及相关依赖库: ```bash conda create -n segformer_env python=3.8 # 创建虚拟环境 source activate segformer_env # 激活创建好的环境 pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio===0.9.0 -f https://download.pytorch.org/whl/torch_stable.html # 安装PyTorch框架 git clone https://github.com/NVlabs/segformer.git # 克隆官方仓库地址到本地目录下 cd segformer # 进入项目根路径位置 pip install -r requirements.txt # 根据文件说明下载所需python包列表内容 ``` 注意: 如果你使用的不是CUDA驱动对应的gpu加速版程序,则去掉`+cu11x`标识符选择cpu-only类型安装命令行选项即可。 --- ## **三、数据准备** 以Pascal VOC2012为例展示整个流程: 1. 下载原始tar.gz格式压缩包并解压至指定文件夹内; ```shell script wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar tar xf VOCtrainval_11-May-2012.tar mv ./VOCdevkit/VOC2012 /path/to/datasets/ ``` 2. 对齐图像尺寸大小并划分成训练集合验证子集两部分; 3. 修改config配置文档指向正确的存储路劲信息; --- ## **四、开始训练** 编辑好参数设定之后就可以启动正式的学习进程了: ```python # 假设已切换到主工程目录内部 nohup python tools/train_net.py --config-file configs/b5_voc.yaml >log.out 2>&1 & tail -f log.out ``` 上面这条指令会异步后台运行脚本并将日志输出重定向保存起来方便后续检查进度情况等用途。 当迭代次数达到预定值或者损失函数趋于稳定收敛状态时便可结束本次实验活动啦! --- ## **五、结果评估与可视化** 利用内置工具生成最终预测效果图供参考对比分析之便: ```sh python demo/demo.py \ --config-file configs/b5_voc.yaml\ --input input_image_path_or_dir/*.* \ --output output_directory_name_here \ [--confidence-threshold thresh_value] \ MODEL.WEIGHTS path_to_model_checkpoint_file.pth ``` 查看产生的mask标签图片是否合理清晰准确地描绘出边界范围轮廓线条等等细节之处哦~ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值