数据分析心得体会
在数据分析这门课程当中主要学习了
numpy
和
pandas
和数据挖掘的知识,学习过
程很充实,也不是很难。
首先学习了
Numpy,
NumPy(Numerical
Python)
是
Python
语言的一个扩展程序库,
主要学习了
1
、矩阵生成,
2
、矩阵切片,
3
、轴对换、相乘,
4
、条件填入(
where
)
,
5
、
数据处理。
NumPy
是一个运行速度非常快的数学库,主要用于数组计算。
在
pandas
中有两类非常重要的数据结构,
即序列
Series
和数据
DataFrame
。
Series
类似于
numpy
中的一维数组,
除了通吃一维数组可用的函数或方法,
而且其可通过索引
标签的方式获取数据,还具有索引的自动对齐功能;
DataFrame
类似于
numpy
中的二维
数组,
同样可以通用
numpy
数组的函数和方法,
而且还具有其他灵活应用。
之后学习了
数据索引

本文分享了作者在学习数据分析课程中的体会,重点介绍了Numpy库的矩阵操作和Pandas的Series与DataFrame数据结构。还探讨了数据索引、统计分析功能以及数据挖掘的基本方法,包括描述性和预测性数据挖掘。最后,作者强调了掌握数据分析的深度与挑战。
最低0.47元/天 解锁文章
1004

被折叠的 条评论
为什么被折叠?



