pandas 过滤某一列的值_Pandas-筛选数据

本文介绍了Pandas库中用于数据筛选、排序、选择、过滤、去重和分组等操作的方法,包括`df.filter()`, `df.sort_index()`, `df.sort_values()`, `df.loc[]`, `df.isnull().values`, `df.drop()`, `df.groupby()`等。示例代码展示了如何按特定列的值进行过滤,以及如何处理缺失值和根据条件选择数据。" 117338809,8162030,C++ Primer Plus第六版编程练习解析,['C++'],"['C++', '编程练习', '解答', '头文件', '源代码']
摘要由CSDN通过智能技术生成

筛选数据

转置

df.T

遍历

traj_plot.py

df = df.set_index('gpstime')

for index, row in df.iterrows():

locationF.write("p%s | %s | %s | %s | %s " % (str(cnt), index, str(row[0]), str(row[1]), str(row[2])) + '\n' )

import numpy as np

import pandas as pd

def _map(data, exp):

for index, row in data.iterrows(): # 获取每行的index、row

for col_name in data.columns:

row[col_name] = exp(row[col_name]) # 把结果返回给data

return data

def _1map(data, exp):

_data = [[exp(row[col_name]) # 把结果转换成2级list

for col_name in data.columns]

for index, row in data.iterrows()

]

return _data

if __name__ == "__main__":

inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]

df 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>