归一化处理公式_每天学点数据分析之五:数据归一化

在数据分析和机器学习中,数据归一化是一个关键步骤,能够消除量纲影响,提高梯度下降法的收敛速度。本文通过房价预测例子展示了归一化前后的最优解寻解过程,解释了为何归一化对于梯度下降法至关重要。并介绍了线性函数归一化、零均值标准化和非线性归一化(包括对数变换、三角函数和sigmoid函数)等方法及其适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据分析过程中,在训练模型之前,需要对特征进行归一化处理,数据的归一化作用主要有两个:去掉量纲,使得指标之间具有可比性;将数据限制到一定区间,使得运算更为便捷。一般在使用梯度下降法求参数的时候,都会采用归一化处理,其实本讲的内容可以参考我之前的机器学习讲义—梯度下降算法之五。

下面再以房价预测的例子来说明一下归一化的作用。以预测房价为例,自变量为房间数(x1)、面积大小(x2),因变量为房价。那么可以得到的公式为:

y=θ1x1+θ2x2

y=θ1x1+θ2x2

其中,x1代表房间数,θ1代表x1变量前面的系数;x2代表面积,θ2代表x2变量前面的系数。

下面两张图(损失函数的等高线)代表数据是否归一化的最优解寻解过程:

未归一化:

b6537bdccf7859efc0e9c7607eb97d46.png

归一化之后:

fe73ae23dbcb2332b934b8b58e89591e.png

在寻找最优解的过程,当数据没有归一化的时候,面积数的范围可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值