不良数据检测matlab,多不良数据的相关量测检测方法

一、引言电力系统状态估计中,不良数据的存在会给估计造成极大困难,甚至导致估计失败。因此,对不良数据的检测与辨识,在电力系统状态估计中占有重要地位,成为主要研究课题之一L’。关于不良数据辨识,较成熟的方法有残差辨识法”、估计辨识法‘”‘’及在此基础上的假设检验法‘,“’等。这些方法在对不良数据进行可靠检测的基础上,能有效地辨识量测采样中的不良数据。不良数据检测,是指把实时量测数据划分为可靠数据和可疑数据两个数据集。然后,将可疑数据运用辨识方法进一步搜索,最终确定出全部不良数据,并剔除或修正,保证估计顺利进行。可靠检测,指可疑数据集中不得漏掉任何不良数据。目前,检测不良数据的方法主要有两类。一类是基于量测残差的相对值,亦称为估计后检测。这类方法计算简单、直观,其检测模式为’,吕’:量测量状态量量测量估计值量测残差。这类方法存在“残差淹没”问题,不能可靠检测。另一类是基于量测量预测值,亦称为估计前检测。这类方法的检测模式为,’“’:量测量预测值量测量采样量测误差。其局限性是当系统中某些负荷变化较快时,检测的准确性大大降低。另外,也无法利用本次大量冗余的量测采样之间可以互相校核的条件。实践表明,上述方法对于检测单不良数据及非相关多不良数据均是有效的。然而对于多不良数据的摔测其可靠程度就不那么高了,需要进一步研究。渔二、残差检测方法的分析(1)设2代表m维的电力系统量测向量,x为n维系统状态向量,”为m维量测误差向量,则电力系统的观测矩阵经线性化后可表示为之=Hx+”(1)式中,H是mXn阶雅可比矩阵。在加权最小二乘状态估计中,x的最佳估计值经规格化后,可表示为第6期多不良数据的相关量测检测方法x一(H少H)一‘H怡设口劣表示x的估计误差,r表示量测量残差,可以推出哮刁x=x一x~(H,H)一‘H,”一D补式中,D=(HTH)一‘H,称为状态量的估差灵敏度矩阵。护一2一之=[I一H(HTH)一‘HT”=V犷刃式中,I是仇x仇单位阵,W=I一H(开rH)一‘H,称为量测残差灵敏度矩阵.规格化残差定义为气,一气/丫而万~(~l,2,…,饥).(2)在量测采样中仅有单不良数据叭时,根据式(4),有护一Wi刀‘式中功,是W的第乞个列向量。上式表明向量护与w‘线性相关,故0000‘=1.而。w军护功军功,008U声=.-二二;;二=丫rTrw于w,丫w丁功,功下wz芍群瓮犷扭一瓷一箫故约二~叭了而五一0050,上式表明单不良数据叭在各个量测量造成的残差。当j=玄时,上式变为,。~矿丽万叭(夕=1,2,…,饥)(2)(3)(4)、特点是对称、等幂。(5)(6)(7)(s),(9)、比较(8)(”)两式,显然气二一m尹‘{护‘,(了一1,“,二’,饥)}。这说明,单不良数据”,一定在本测点造成最大的规格化残差。故对于单不良数据,只需检查各量测的规格化残差,便可确定其所在测点。寒(3)对于多不良数据,情况要复杂得多。由于不良数据的随机性质,使得它们在量测残差上造成的迭加效果,在很多条件下不能反映量测误差的真实情况。特别是那些线性相关的量测,由于相互间的影响更大,从而导致了“残差淹没”.考查式(4),它还可进一步表示为护=”一H刁劣(10)很明显,“残差淹没”的发生是由于H口劣的存在,故失去了量测误差与残差一一对应的关系。设m维向量刁”~H劣,那么式(10)变为犷=刀一口”(11)刁刃的生成经历了由式(3)确定的由m维量测量误差到n维状态量估差的“压缩”变换,每个26中国电机工程学报第量测误差经估差灵敏度矩阵D的对应向量加权散布到各状态量,造成状态量估差刁x;然后,经历了由

1. 显著点的检测 Itti的A Model of Saliency-Based Visual Attention for Rapid Scene Analysis (TPAMI 1999)论文是显著性检测的鼻祖论文,检测出来的是用户关注的点。 2. 显著区域的检测 侯晓迪同学在2007年发表的一篇CVPR的论文,用很简单的方法检测了显著性区域,那之后显著性检测主要以区域检测为主:Saliency detection: A spectral residual approach (CVPR 2007),虽然之后有人诟病这篇论文有不足之处,但该想法简单,推动了显著性研究的普及。侯同学靠这一篇文章再加上投稿期间的趣事,就封神了。 3. 其他经典的显著性检测方法 在那之后陆续又有一些经典的显著性检测算法被提出:https://blog.csdn.net/touch_dream/article/details/78716507 可以看这个博文。 4. 基于深度学习的显著性检测 再之后,显著性检测领域就进入了Deep Learning时代, Deep Visual Attention Prediction TIP2018 (CODE)     https://github.com/wenguanwang/deepattention Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model (CODE)     https://github.com/marcellacornia/sam CVPR2016 Shallow and Deep Convolutional Networks for Saliency Prediction (CODE)     https://github.com/imatge-upc/saliency-2016-cvpr Saliency Detection with GAN (2017)     https://github.com/imatge-upc/saliency-salgan-2017  (CODE)     https://github.com/batsa003/salgan/ (PyTorch的版本) 5. 非自然图象的显著性检测 例如,海报的显著性检测,图表的显著性检测,地理数据的显著性检测等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值