傅里叶变换尺度变换性质_傅里叶变换 拉普拉斯变换 微分方程 齐次方程 复数 关系梳理...

1.相关基础知识

(1)首先介绍特殊字符 e

恰当的例子就是,存1块给银行,利率100%,1年以后取出来就是2块,如果这1块在1年中以极短时间反复取,反复存,相当于复投的概念,极短时间内产生的利息也投入去产生利息,那么1年以后,就得到e=2.718。

如果利率是x,那么就是

J Pan:自然常数“e”,工程中的自然数“1”​zhuanlan.zhihu.com
3bdf1d9924d4562d1d8901f0c2492a11.png

(2).i

定义

,
,i在物理上表示旋转的意思。具体资料看下面小卡片。
J Pan:被众人膜拜的欧拉恒等式是个什么东东?​zhuanlan.zhihu.com
0fdf8b61135cc1a4f4c7e5e41d57c87e.png

(3).欧拉公式

这个可以这样得到:

因为

那么可以通过MATLAB,取n=5000,画出5000个点的图,就会发现是一个圆。

每个点相当于在实轴有投影,在虚轴有投影(带i的分量)

J Pan:被众人膜拜的欧拉恒等式是个什么东东?​zhuanlan.zhihu.com
0fdf8b61135cc1a4f4c7e5e41d57c87e.png

2.傅里叶级数,傅里叶变换

傅里叶级数:

周期信号:

,这里
的周期是

每个频率分量的系数,对于1个固定信号,不同频率分量下这个系数是可以求出来的,是个固定值。

意义和作用:每个周期信号可以由多个正弦信号来合成。这样可以看出这个信号在不同频率的分量是多少。

之前看到过一个新奇的理解:首先周期函数(角频率w),使用正作弦合成,为什么是由一些离散频率点(w,2w,3w,...)的正余弦合成的呢。这里要注意,这些频率点(w,2w,3w...)其实你可以认为他们的周期都是T。同周期的信号由同周期的正余弦函数,经过相位偏移,可以最终合成,还是比较好理解的。另外,正弦是奇函数,余弦是偶函数。有个很简单的公式变换可以证明:任何一个周期函数都可以分解了 1个奇函数+1个偶函数 之和,这就是为什么傅里叶级数里既有正弦也有余弦了。

傅里叶变换:

对于连续信号分解变换就是傅里叶变换,对于离散信号变换就是Z变换。

3.拉普拉斯变换

其实作用还是将一个信号分解,分解为各个频率分量信号的合成。但是因为一个信号可以进行傅里叶变换,有个前提,是满足狄利克里条件,这个条件就是绝对可积的意思。比如

这个函数就满足绝对可积的条件,x趋于无穷大的时候,y也是无穷大的。

所以这个时候,创建1个新函数

,这里要求x>0,
应该是正实数。(要求x>0是有意义的,否则x<0,又不收敛了,可以想一下),这个时候对
进行傅里叶变换,得到
傅里叶变换之后,再乘以
,就可以得到f(x)的傅里叶变换。最后达到目的,得到f(x)的各频率分量。只不过这个频率分量的幅度随着x的增大,也是指数级增大的。不像可积信号的傅里叶变换,每个频率分量的幅度是不变的。结论就是:傅里叶变换是拉普拉斯变换的特殊形式(
这种情况下,这个是可以理解的, 如果这个信号本身就可积,就不需要乘以衰减分量,直接就可以进行变换。如果这个信号不可积,那就需要先乘衰减分量,再傅晨里叶变换,再将衰减分量去掉),至于拉普拉斯变换里的
,只是进行了一个变量替换。在傅里叶变换里,我们看某个频率的分量,就看
的分量就可以了。在拉普拉斯变换里,我们就看
的分量就可以了,说白了是看
的分量,说白了是一回事。

假设:

要求:
,x定义在正半轴。

做傅里叶变换:

这里的

我认为是一个常量,只不过这个常量可以有无数多个数可以定,都可以达到将原函数进行傅里叶变换的目的。

这里定义新变量

,
,
变为

,如果这个值可以实际求出来(
确实为一个数),
的值就是
的值,就是一个数。

因为

,所以

所以

上面的

就是

下面的文章,我觉得精华是那几幅图。一定要去理解

在图形上的区别,随着时间螺旋向前的信号,一个是幅度不变,一个幅度指数上升或者指数衰减。
J Pan:从另一个角度看拉普拉斯变换​zhuanlan.zhihu.com
d3d49a471842a9b6da2f1a9ef6a5921b.png

下面的文章说得特别好的地方在于:

1.拉普拉斯变换,将一个信号变了幅度不变(傅里叶变换)或者幅度呈指数变化的正弦信号的叠加,这种正弦信号在很多物理应用中是很好使用的。原信号在很多物理应用中就不好使用,不好分析。相当于将一个不好分析的信号分解成了众多好分析的信号。

正弦信号,或者

,
信号的一个很大优点是,他们导数是其自身(可能增加一些系数),在物理上反映为正弦形式的电流通过电感(微分),电容(积分),还是正弦形式,很好处理。从数学上看,对一个微分方程,进行拉氏变换,就变成了一个代数方程,微分方程就很好求解。

拉氏变换我觉得有两个作用:1.解微分方程 2.传递函数分析

这两个作用之间我认为是没有关系的。

比如:

7c0e90d774f31fc3e323cee40b9f89b6.png

像这种形式,自变量是t,求解函数f(t)(这里是u(t)).对原方程进行拉氏变换:

0b83a451661451785151740fe1444396.png

然后再对u(s)进行拉氏逆变换,根据s的式子,可以直接逆变换。

将上式化解成下面类似形式(上面具体的变换,我懒得推理了)

c84cf637ee6f931c3e57bb2fce5819f1.png

反变换,就得到了f(t),完成了目标

837d89e9fa00c76a9925e7dc996db761.png

再比如:

拉氏变换:

进行傅里叶反变换

同样上面这个微分方程,使用分离变量法也可以搞定:

3840c8ca07a507b2e17b4746e9a29344.png

来自下面地址:

[图文]6.2 常微分方程的分离变量法 - 百度文库​wenku.baidu.com

从上面这个例子可以看出,拉普拉斯变换,可以纯粹作为微分方程的一种解法来用。

场景就是,求f(t),先拉氏变换,再拉氏逆变换。

而且好像(后面有时间具体证实),比如微分方程解法,只有齐次方程才能使用分离变量法来解,而且还是一阶齐次微分方程。而拉氏变换可以解高阶,非齐次微分方程。

各类微分方程的解法 - 百度文库​wenku.baidu.com

再多说两句,上面链接里总结了各种微分方程的解法,其中,有很多要求是齐次方程,然后关于什么是齐次方程又有一些讨论:

齐次方程的「齐次」代表什么?​www.zhihu.com

这个链接里对齐次讨论的比较深入。

从各种微分方程的解法里我得出的结论:

对于齐次微分方程,一阶线性微分方程,可以使用分离变量法来求解。当然,根据上面举的例子,使用拉氏变换法也能求解,不过使用拉氏变换可能点大炮打蚊子的感。

对于高阶微分方程,上面链接里的解法,其实就是使用的拉氏变换,只不过把中间过程省掉了,让你死记规律了。

下面这个链接里说了齐次方程的意义:

齐次/非齐次偏微分方程组,所谓齐次与非齐次到底有何实在意义?​www.zhihu.com

其中,有一条是这样说的:

01256a07f31959b10263ed722e2031e5.png

就好像下面要举的弹簧振子的例子一样,如果F(t)=0,那么就是齐次方程,求出的r(t)就是无外力作用下的响应。

如果F(t)=1,那么求出的r(t)就是阶跃输入下的响应。

如果F(t)是个变化的函数,那么直接看传递函数就好了。

拉氏变换的另外一个应用,也是我最关注的应用:分析系统响应

比如

64bbc904399a55ef7cc1cc0c38b1b1c9.png

来自于

J Pan:如何入门自动控制理论​zhuanlan.zhihu.com
89169f571e56fb514d86207ee80871ca.png

这里,输入是F(t),输出是r(t),自变量是t,可以认为有两个函数。我们要求不是单独的F(t),也不是r(t),F(t)可以认为是已知的随时间变化的量,我们要求的是:不同变化规律下的F(t)(可以是正弦,可以是阶跃),对应的r(t)(这是响应)

这个时候对上式进行拉氏变换,最后得到:

7a416ed26324b8cb4f180ce333acf8b9.png

这个时候,我们不需要拉氏逆变换, 我们不需要求Y(t),因为本身就不存在Y(t)这个函数,这是个没有意义的函数。上面的拉氏变换,右边:分子表示输出的某个W分量的向量,分母表示输入的某个W分量的向量。可以认为:输入分量引起的输出分量的响应,是放大还是衰减,因为是向量,相当于两个分量有相位,表示滞后还是超前。

这个就是我们关心的幅频响应和相频响应

038ebb1b978cefe5d0d33a9b4373186a.png

这个也终于解开我,拉氏变换在分析系统响应和解微分方程之间的关系了,我的理解是没有关系,意义完全不同。分析系统响应,要充分考虑拉氏变换的物理意义。对于解微分方程,就仅仅是一种数学变换而已,方便求解而已。

然后求解微分方程:如果是非齐次微分方程,要先化成齐次微分方程,求出通解,再加上特解。所以说齐次方程是解非齐次方程的一个过度形式,利于使用分离变量法。

拉普拉斯变换有什么用?​www.zhihu.com

现在再最后总结一下:

其实傅里叶变换和拉氏变换是一回事,目的就是将一个不好处理的信号分解为一些正弦,余弦信号或者是复指数信号(根据欧拉公式知道,其实是一回事)。原因是正弦信号好处理,为什么好处理?哪些方面好处理?

正弦信号的一阶微分,二阶微分,多阶微分还是其本身。或者是指数信号的微分(底是e的情况下)也是其本身,那么在处理多阶微分的情况下,如果是这个函数是正弦信号,那么不论多少阶微分,都特别好运算,一下子降为了代数方程。而我们很多要处理的物理现象或者物理量其实都是对t的一阶或者多阶微分,比如加速度,速度等。比如感抗应该也是电压对时间求微分?这个需要再核实。

我们已经知道傅里叶变换是特殊的拉氏变换,那么我就想,一个可积的周期信号的傅里叶变换应该与拉氏变换(

,不进行指数衰减情况下)一样的吧?

我们看

的两种变换:

11013b5ff415fc8c2f275528825d0d37.png

ce99d094aa4d828c2172f985e611f544.png

傅里叶变换是:

拉氏变换是:

可以看到,两个变换,虽然都在

处是个极大值,但明显不同,傅氏变换,只有在
处有分量,但是拉氏变换在其他频率处也有分量,这是为什么呢?

因为根据欧拉公式

,所以我们下面就研究
的两种变换下的区别:

考察信号:

dc172322dd04be01a6790d8235019f65.png

57278ed12fcf238d188a744c6ef8fee0.png

傅氏变换:

拉氏变换:

粗看,在

这个频率上都是个极大值(要比较傅氏变换与拉氏变换是否相同,这里设了个前提,
),但不同是,傅氏变换上,只有
有频率分量,在拉氏变换上,其他频率处也有频率分量。这点怎么理解?推导公式看看:

我认为这里的关键是:傅氏变换,时间是从

,拉氏变换是从
(这是保证收敛才这样的,衰减系数
,如果t<0,那就不是衰减了,是放大了)

这里的关键应该是,对于

,对于傅氏变换来说,
的范围是
,而对于拉氏变换来说,t的范围是
,也就是说,其实我们上面看到的变换式,相当于针对的是不同函数,当然变换结果不一样。

我们可以看这么一个函数:

:

这个函数应该是我们求

拉氏变换时对应的原函数,我们看这个函数求出来的傅氏变换与拉氏变换是否一致。

可以看到,这个与拉氏变换结果是完全一致的。

关于傅氏变换推导比较正常的文章 :

[图文]傅里叶变换及其性质 - 百度文库​wenku.baidu.com [图文]周期信号的傅立叶变换 - 百度文库​wenku.baidu.com
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值