计算机二级身0准1,计算机二级-24-1.字处理题(小郑-准考证)

1.问题1:在练习文件夹下打开【素材】文件夹,双击【ALL最初始素材】,新建Word文档,【文件】-【保存】,命名为“准考证”,保存到素材文件夹。

37c77ca60ab8b8943fbddf73c33154b9.png

2.打开准考证示例,查看效果,回到文档,【插入】-【表格】,列数3、行数9,【选中】需合并的单元格,【布局】-【合并单元格】,再【调整】列宽。

37c77ca60ab8b8943fbddf73c33154b9.png

3.【Ctrl+C】复制准考证文字内容,【Ctrl+Shift+Alt】可一次选择多行,【Ctrl+V】粘贴到表格中,点击【保存】。

37c77ca60ab8b8943fbddf73c33154b9.png

4.【全选】表格,【布局】-【属性】,选择环绕,点击定位,进行设置,【布局】-【自动调整】-【根据窗口自动调整表格】,【开始】-【段落】-【边框底纹】,其样式30%、颜色蓝色。

37c77ca60ab8b8943fbddf73c33154b9.png

5.【选中】标题,字号小二,间距加宽、磅值1.8,【选中】考生须知,【布局】-【文字方向】-【竖向】,【中部居中】,【选中】后面的文字,【段落】-【编号】,再根据示例设置文字是大小、对齐方式。

37c77ca60ab8b8943fbddf73c33154b9.png

6.问题2:光标定位到标题后,【邮件】-【开始邮件合并】-【邮件合并分步向导】,默认点击下一步,第三步点击“浏览”,找到“考生名单”,点击【确定】,默认下一步。

37c77ca60ab8b8943fbddf73c33154b9.png

7.【选中】红色文字,【右键】删除,【规则】-【如果那么否则】,按要求设置,【格式刷】刷回“中级”格式,光标定位到下方空单元格,点击【插入合并域】。

37c77ca60ab8b8943fbddf73c33154b9.png

AI实战-出租车价格数据集分析预测实例(含20个源代码+65.69 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共124.23 KB;数据大小:1个文件共65.69 KB。 使用到的模块: pandas seaborn xgboost matplotlib.pyplot sklearn.preprocessing.RobustScaler sklearn.metrics.mean_absolute_error sklearn.model_selection.GridSearchCV sklearn.model_selection.train_test_split numpy warnings joblib sklearn.set_config sklearn.impute.SimpleImputer sklearn.preprocessing.LabelEncoder sklearn.model_selection.cross_val_score sklearn.preprocessing.StandardScaler sklearn.metrics.r2_score sklearn.metrics.mean_squared_error sklearn.linear_model.LinearRegression sklearn.linear_model.Lasso sklearn.linear_model.Ridge sklearn.neighbors.KNeighborsRegressor sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor os sklearn.preprocessing.OneHotEncoder sklearn.compose.ColumnTransformer sklearn.pipeline.Pipeline sklearn.tree.DecisionTreeRegressor sklearn.svm.SVR sklearn.neural_network.MLPRegressor bokeh.io.output_notebook bokeh.io.show bokeh.plotting.figure bokeh.layouts.gridplot sklearn.preprocessing.PolynomialFeatures scipy.stats sklearn.metrics.mean_absolute_percentage_error sklearn.ensemble.ExtraTreesRegressor xgboost.XGBRegressor lightgbm.LGBMRegressor sklearn.impute.IterativeImputer statsmodels.stats.outliers_influence.variance_inflation_factor statsmodels.api sklearn.metrics.( plotly.express psynlig.plot_correlation_heatmap bokeh.plotting.show bokeh.plotting.output_notebook catboost.CatBoostRegressor sklearn.linear_model.ElasticNet missingno
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值