matlab常系数线性矩阵微分方程组,基于Matlab常系数线性微分方程组的求解

·基础数学· 基于 Matlab 常系数线性微分方程组的求解* 严水仙 (赣南师范大学 数学与计算机科学学院,江西 赣州 341000) 摘 要: 在常微分方程课程教学中,常系数线性微分方程组可以通过线性代数的理论、矩阵指数、拉普拉斯变 换等方法进行求解. 本文主要叙述利用 Matlab 数学软件在求解常系数线性微分方程组中的应用.关键词: 常系数线性微分方程;Matlab;矩阵指数 中图分类号: O175 文献标志码: A 文章编号:1004 -8332(2018)03 -0010 -05 微分方程课程是高校不少理工科专业(如数学、力学、控制等) 的重要基础理论课程. 常微分方程是描述自然科学、工程技术和社会科学中的运动、演化和变化规律的重要连续型模型. 物理、化学、材料、医学、经济学等领域中的许多原理和规律都可以描述成相应的微分方程,如生物种群中的生态平衡、流行病存在的阈值定理、化学反应中的稳定性、遗传基因变异、股票的涨幅趋势、利率的浮动、市场均衡价格的变化等. 描述、认识和分析其中的规律可以通过研究相应的微分方程数学模型来实现.[1] 在微分方程的理论中,线性微分方程组是非常值得重视的一部分内容,它是了解并掌握非线性微分方程、非线性动力系统、非线性控制等课程的基础. 常系数线性微分方程组的求解是线性微分方程组理论中最简单、最直观的部分,熟悉并掌握常系数线性微分方程的求解将有利于更好的理解线性系统的基本理论. Matlab 是由美国的 Cleve Moler 博士等[2 -3]于 1980 年提出的以矩阵运算为基础,把计算、程序设计等融合到了一个简单易用的交互式工作环境中. 可实现工程计算、算法研究、符号运算、建模和仿真、原型开发、数据分析及可视化、科学和工程绘图、应用程序设计等功能. Matlab 强大的运算功能和图形使其成为目前世界上应用最为广泛的科学计算软件之一,在教学中能快速的计算方程的解并描绘直观的几何图形.[4 -6]鉴于此,本文主要介绍借助于 Matlab 来求解常系数线性微分方程组,通过利用 Matlab 命令,计算系数矩阵的特征值、特征向量、矩阵指数求解线性微分方程组. 1 常系数线性微分方程的基本理论[1] 定理 1[1] 如果 A(t) 是 n × n 阶矩阵函数, f(t) 是 n 维列向量函数. 它们都在区间 a  t  b 上连续,则 对区间 a  t  b 上的任意 t0 ∈[ a, b]及任一常数 n 维列向量 η ,方程组 x' = A(t)x + f(t) (1) 存在唯一解 φ(t),定义于整个区间 a  t  b 上,且满足初值条件 φ(t0) = η.定理 2[1] 齐次线性微分方程组 x' = A(t)x 一定存在 n 个线性无关的解 x1(t), x2(t),…, xn(t). 定理 3[1] 齐次线性微分方程组 x' = A(t)x 一定存在一个基解矩阵 Φ(t). 如果 ψ(t) 是方程组的任意解,那么 ψ(t) = Φ(t)c, (2) 这里 c 是确定的 n 维常数列向量. 2018 年 赣南师范大学学报 №. 3 第三期 Journal of Gannan Normal University May. 2018 * 收稿日期:2017 -12 -12 DOI:10. 13698/j. cnki. cn36 -1346/c. 2018. 03. 003 基金项目: 江西省教育厅科学技术研究项目(GJJ170816). 作者简介: 严水仙(1981 - ),男,江西省高安市人,赣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值