快速排序 python 4种写法_[算法] 关于快速排序的四种写法

本文详细探讨了快速排序算法的四种不同分段策略:填坑法、交换法、顺序遍历法和另类交换法。通过代码示例展示了每种方法的运作流程,并强调了算法中的细节处理和临界值考虑。这四种方法虽然在细节上有差异,但都体现了快速排序的核心思想——分治法和递归。
摘要由CSDN通过智能技术生成

前序

说到排序算法,应该算是家喻户晓,人人皆知的大路货了。但是往往这些为人所熟知的东西中,也存在一些可以令人琢磨的细节。

这不,某天深夜,无所事事,大概是太寂寞,在思念了一番妹子以后,脑子里突然闪过了快速排序,遂在脑子中模拟了一遍快速排序的运行过程,以前只是死记硬背代码,没有去探究其运作的流程,于是在一些细节处陷入了沉思和迷惑,导致脑回路短路,当场打开斗鱼看了会球。

首先大家都知道,快排主要有两部分,分段(Partition)和递归(Recursive)。分段既将一组数据相对一个参考值分为两段,左段比参考值小,右端比参考值大,然后再递归对这两段进行分段。那么快排的关键部分自然就是这个分段算法,有了分段算法,加上递归,一个快排算法就写好了。

当然别小看了这个分段算法,是需要好好琢磨一番的。主要是一些临界值和极端情况的考虑,我的迷惑便是于此。于是查找了一些书籍和网络资源,加上自己的思路,总结了四种不同的分段算法。细节控可以来好好感受一下。

一. 填坑法

之所以叫填坑法,是其运作过程就像填坑一样。而且一点都不坑,代码形式非常好理解。

代码如下:

int partition(int a[], int start, int end){

int p = a[start];

while(start < end){

while(a[end] >= p && start < end) end--;

a[start] = a[end];

while(a[start] < p && start < end) start++;

a[end] = a[start];

}

a[start] = p;

return start;

}

void qs(int a[], int start, int end){

if(start >= end){

return;

}

int mid = partition(a, start, end);

qs(a, start, mid-1);

qs(a, mid+1, end);

}

二. 交换法

交换法,顾名思义就是要对两边的元素进行交换,再代码形式中用到swap函数。其流程如下:

代码如下:

void swap(int* a, int* b){

int temp = *a;

*a = *b;

*b = temp;

}

int partition(int a[], int start, int end){

int pivot = a[start];

int p = start+1;

int q = end;

while(p <= q){

while(a[p] < pivot && p <= q) p++;

while(a[q] >= pivot && p <= q) q--;

if(p < q){

swap(&a[p], &a[q]);

}

}

swap(&a[start], &a[q]);

return q;

}

void qs(int a[], int start, int end){

if(start >= end){

return;

}

int mid = partition(a, start, end);

qs(a, start, mid-1);

qs(a, mid+1, end);

}

可以看出这个方法和第二个方法有什么不同的地方,为什么要选第二个元素为start

三. 顺序遍历法

上面两种方法是维护了一个start,一个end指针,逐步向中间趋近的过程。而顺序遍历用一次遍历完成对数据的分段。

代码如下:

void swap(int* a, int* b){

int temp = *a;

*a = *b;

*b = temp;

}

int partition(int a[], int start, int end){

int pivot = a[end];

int storeIndex = start;

for(int i = start; i < end; i++){

if(a[i] < pivot){

swap(&a[storeIndex], &a[i]);

storeIndex++;

}

}

swap(&a[storeIndex], &a[end]);

return storeIndex;

}

void qs(int a[], int start, int end){

if(start >= end){

return;

}

int mid = partition(a, start, end);

qs(a, start, mid-1);

qs(a, mid+1, end);

}

四. 另类交换法

这个方法和之前的交换法的思路相同,但是它不返回mid值,所以索性称之为另类交换法吧。运作的流程就不做解释,直接上代码,各位客官姑且一看。

void qs(int a[], int start, int end){

if(start >= end){

return;

}

int pivot = a[start];

int p = start;

int q = end;

while(1){

while(a[p] < pivot) p++;

while(a[q] > pivot) q--;

if(p >= q){

break;

}

swap(&a[p], &a[q]);

p++;

q--;

}

qs(a, start, p-1);

qs(a, q+1, end);

}

后记

这四种算法用了四种不同的解决问题的思路,虽然都是细节上的不同,但是细细去想一下也能领会其中到奥妙。第一次在sf上发文章,也是为了巩固和牢记自己这么多天琢磨的东西。如果有什么错误和不足,也请各位看客多多指正和补充。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值