matlab 判断矩阵奇异,Matlab 奇异值、奇异矩阵、svd函数

奇异值:

奇异值分解法是线性代数中一种重要的矩阵分解法,在信号处理、统计学等领域有重要应用。

定义:设A为m*n阶矩阵,A'表示A的转置矩阵,A'*A的n个特征值的非负平方根叫作A的奇异值。记为σi(A)。如果把A‘*A的特征值记为λi(A‘*A),则σi(A)=sqrt(λi(A’*A))。

奇异矩阵:

奇异矩阵是线性代数的概念,就是对应的行列式等于0的矩阵。

奇异矩阵的判断方法:首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。然后,再看此方阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。 同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。如果A为奇异矩阵,则AX=0有非零解或无解。如果A为非奇异矩阵,则AX=0有且只有唯一零解。

svd设A为m*n阶矩阵,A'表示A的转置矩阵,A'*A的n个特征值的非负平方根叫作A的奇异值。记为σi(A)。

奇异值分解:

奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。U和V中分别是A的奇异向量,而S是A的奇异值。AA'的正交单位特征向量组成U,特征值组成S'S,A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系 。

定理和推论定理:

设A为m*n阶复矩阵,则存在m阶酉阵U和n阶酉阵V,使得:A = U*S*V’其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A)。推论:设A为m*n阶实矩阵,则存在m阶正交阵U和n阶正交阵V,使得A = U*S*V’其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A)。

说明:1、 奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。U和V中分别是A的奇异向量,而S是A的奇异值。AA'的正交单位特征向量组成U,特征值组成S'S,A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系。

2、 奇异值分解提供了一些关于A的信息,例如非零奇异值的数目(S的阶数)和A的秩相同,一旦秩r确定,那么U的前r列构成了A的列向量空间的正交基。

奇异值分解函数 svd

格式: s = svd (A) %返回矩阵A的奇异值向量

[U,S,V] = svd(A) %返回一个与A同大小的对角矩阵S,两个酉矩阵U和V,且满足= U*S*V'。若A为m×n阵,则U为m×m阵,V为n×n阵。奇异值在S的对角线上,非负且按降序排列

[U1,S1,V1]=svd(X,0) %产生A的“经济型”分解,只计算出矩阵U的前n列和n×n阶的S。说明:1.“经济型”分解节省存储空间。2. U*S*V'=U1*S1*V1'。

[1]矩阵近似值奇异值分解在统计中的主要应用为主成分分析(PCA),它是一种数据分析方法,用来找出大量数据中所隐含的“模式”,它可以用在模式识别,数据压缩等方面。PCA算法的作用是把数据集映射到低维空间中去。数据集的特征值(在SVD中用奇异值表征)按照重要性排列,降维的过程就是舍弃不重要的特征向量的过程,而剩下的特征向量张成空间为降维后的空间。正交矩阵正交矩阵是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,对于复数的矩阵这导致了归一要求。

注意正交矩阵的定义:n阶‘实矩阵’ A称为正交矩阵,如果:A×A′=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。) 若A为正交阵,则下列诸条件是等价的:

1) A 是正交矩阵

2) A×A′=E(E为单位矩阵)

3) A′是正交矩阵

4) A的各行是单位向量且两两正交

5) A的各列是单位向量且两两正交

6) (Ax,Ay)=(x,y) x,y∈R

e71a89770341c2ac2bb6136035715905.png

matlab简单实现SVD的推荐

%svd chengxu A = [5 5 0 5;5 0 3 4; 3 4 0 3; 0 0 5 3; 5 4 4 5; 5 4 5 5]; A = A'; [U S V] = svd(A); U ...

numpy.linalg.svd函数

转载自:python之SVD函数介绍 函数:np.linalg.svd(a,full_matrices=1,compute_uv=1) 参数: a是一个形如\((M,N)\)的矩阵 full_matr ...

Matlab学习笔记 figure函数

Matlab学习笔记 figure函数 matlab中的 figure 命令,能够创建一个用来显示图形输出的一个窗口对象.每一个这样的窗口都有一些属性,例如窗口的尺寸.位置,等等.下面一一介绍它们. ...

matlab学习笔记 bsxfun函数

matlab学习笔记 bsxfun函数 最近总是遇到 bsxfun这个函数,前几次因为无关紧要只是大概看了一下函数体去对比结果,今天再一次遇见了这个函数,想想还是有必要掌握的,遂查了些资料总结如下. ...

matlab 全部的随机数函数

matlab 全部的随机数函数 (一)Matlab内部函数 a. 基本随机数 Matlab中有两个最基本生成随机数的函数. 1.rand() 生成(0,1)区间上均匀分布的随机变量.基本语法: ran ...

python实现类似于Matlab中的magic函数

参考这篇文章的代码封装了一个类似Matlab中的magic函数,用来生成魔方矩阵. #!/usr/bin/env python # -*- coding: utf-8 -*- import numpy ...

Matlab调用C语言函数

Matlab调用C语言函数 如果我有一个用C语言写的函数,实现了一个功能,如一个简单的函数:double add(double x, double y) { return x + y ;}现在我想要在 ...

Matlab随笔之画图函数总结

原文:Matlab随笔之画图函数总结 MATLAB函数画图 MATLAB不但擅长於矩阵相关的数值运算,也适合用在各种科学目视表示(Scientific visualization).本节将介绍MATL ...

matlab中的eval函数使用

matlab中的eval函数使用 在matlab的命令行窗口中输入help eval命令回车就可以看到eval函数的官方解释,大概的意思就是执行matlab中的表达式,计算expression表示的代 ...

matlab @(x)构造匿名函数

一起来学演化计算-matlab@(x)构造匿名函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 https://www.ilovematlab.cn/thread-81614-1 ...

随机推荐

js 模版加载到前端

js 模版加载到前端 简单有效不高端 配个路由 /js/:filename ,  用 readTemplate 响应请求,前端可以按模块方式直接 require 模板 'use strict' var ...

java 导入自定义类

eclipse导入很容易,昨天上课学了一下用记事本写java,导入自定义类,这就麻烦了. 代码贴一下,方便操作: package tom.jiafei; public class SquareEqua ...

jps查看java进程中哪个线程在消耗系统资源

jps或ps -ef|grep java可以看到有哪些java进程,这个不用说了.但值得一提的是jps命令是依赖于/tmp下的某些文件 的. 而某些操作系统,定期会清理掉/tmp下的文件,导致jps无 ...

一句话,讲清楚java泛型的本质(非类型擦除)

背景 昨天,在逛论坛时遇到个这么个问题,上代码: public class GenericTest { //方法一 public static

ubuntu服务器配置

首先设置Ubuntu更新源 https://mirrors.tuna.tsinghua.edu.cn/help/ubuntu/ sudo cp /etc/apt/sources.list /etc/a ...

Integer Sequence Dividing CodeForces - 1102A (规律)

You are given an integer sequence 1,2,…,n1,2,…,n. You have to divide it into two sets AAand BB in su ...

Vue之组件使用(一)

这仅仅是个人为了防止忘记做的笔记而已,仅供参考,有不对的地方请纠正 组件这种东西用来封装多次使用的控件还是很有用处的,我还是挺喜欢这种模式,优化了前端的工作,写个组件也比较简单.下次有时间记录一下样式 ...

[leetcode]Wildcard Matching @ Python

原题地址:https://oj.leetcode.com/problems/wildcard-matching/ 题意: Implement wildcard pattern matching wit ...

前端框架比较,Layui - iView - ElementUI

Layui 分为单页版和iframe版 单页版 通过将单页代码输出到div,不如要完整的html代码. 刷新页面后,依然能够记录上一次的页面. 此种方式不易于调试前端代码. Iframe版 通过ifr ...

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值