本文继 去雨去雾去模糊篇 、 图像增强与图像恢复篇 、图像修复Inpainting篇之后,继续盘点CVPR 2020 中底层图像处理技术中非常重要的一块:图像质量评价(Image Quality Assessment)。
示例如下图:
上面左图为原图,中间为经过JPEG2000压缩后的图,右图为高斯模糊后的图,从清晰度来讲,肯定第一幅图质量更高,质量评价就是给图像打分,即如何用算法自动化给图像打分。
可以是有参考图像的打分,比如对图像压缩后质量进行评价。也可以没有参考图像,即盲图像质量评价。
虽然是个小众领域,但是很重要。因为对图像处理增强也好、恢复也好,你总要评价结果好坏;
又或者你单纯的想对某一项视觉任务评估图像能否满足需要,比如针对人脸识别的质量评价,看一幅图像是否应该拒绝还是输入到人脸识别系统中;
现在也有很多人研究图像的美学评价,这就很好理解了,对图像拍的美不美进行打分。
CVPR 2020 共有7篇相关论文,既涉及到底层的视觉感知质量的评价,也涉及到对高级视觉任务比如图像描述、人脸识别的质量评价,多篇论文代码开源并贡献了数据集,非常值得参考!
已经开源或者即将开源的论文,把代码地址也附上了。
大家可以在:
http://openaccess.

本文详细盘点了CVPR 2020中关于图像质量评价的7篇论文,涵盖从底层视觉感知到高级任务如图像描述、人脸识别的质量评估。论文提出了新的数据集、自适应超网络架构和盲图像质量评价模型,对于图像处理、增强和识别领域的研究具有重要参考价值。部分论文已开源代码和数据集。
最低0.47元/天 解锁文章
4313

被折叠的 条评论
为什么被折叠?



