答:>> triplequad(@(x,y,z)1*(x.^2+y.^2+z.^2
答:首先建立一个m文件 我取的名字叫 syfs0000 function y=syfs0000(x) y=[9*x(1)^2+36*x(2)^2+4*x(3)^2-36; x(1)^2-2*x(2)^2-20*x(3); 16*x(1)-x(1)^3-2*x(2)^2-16*x(3)^2;]; end 然后在command window 输入 fsolve(‘syfs0000’,[0 0 0]) 得到 ...
答:程序如下: t=0:pi/20:2*pi;x=sin(t)*2;y=cos(t)*2;z=linspace(-5,5,length(t));X=meshgrid(x);Y=meshgrid(y);Z=[meshgrid(z)]';mesh(X,Y,Z)%第一个圆柱面xlabel('x')ylabel('y')zlabel('z')hold onx1=sin(t)*2;z1=cos(t)*2;y1=linspace(-5,5,le...
答:首先将两个方程并列找出两个曲面相交的曲线.通过消去z,得到: 2-x²=x²+2y² 即 x²+y²=1 所以,此曲线位于半径为1的圆柱面上.那么x和y的积分限很容易就找到了:x²+y²=1 要找到z的积分限,就需要知道两个曲面哪个...
答:你这个是个三元函数,要是画图就是四维的了 按你的意思,你说要画满足f(x,y,z)=0方程的曲面吧 那么比较麻烦,先要解出方程z=fz(x,y),再根据fz画图 由于是四次方程,所以有四个解,还要考虑在实数范围 根据以上种种,写出了程序 f=@(x,y,z)x.^2+y...
答:体积=∫(0,2π)dθ∫(0,√3)pdp∫(p²/3,√4-p²) dz =∫(0,2π)dθ∫(0,√3)(p√(4-p²)-p³/3)dp =2π[-1/3(4-p²)^(3/2)-1/12*p^4](0,√3) =2π【19/12】 =19π/6
答:用截面法来求解: ∭dxdydz= ∫(0,1)dz∬dxdy 显然,∬dxdy为曲面上的截面面积 x^du2+y^2=z 则截面为半径为√z的圆,则 ∬dxdy=πz 则原式= ∫(0,1) πzdz =π/2z^2|(0,1) =π/2 或者 作变换x=rcosu,y=rsinu,则dxdy=rdrdu, 原式=∫d...
答:立体体积可用三重积分表示,V=∫∫∫dxdydz,积分区域为z=6-x^2-y^2及z=√x^2+y^2所围成的立体,联立两曲面方程,解得z=2即两曲面的交接面。用截面法计算此三重积分,V=∫(0到2)dz∫∫dxdy+∫(2到6)dz∫∫dxdy=π∫(0到2)z^2dz+π∫(2到6)(6-z)dz=32π/3
答:解:根据题意分析知,所围成的立体的体积在xy平面上的投影是D:y=1与y=x²围成的区域(自己作图) 故 所围成的立体的体积=∫∫(x²+y²)dxdy =2∫dx∫(x²+y²)dy =2∫(x²+1/3-x^4-x^6/3)dx =2(x³/3+x/3-x^5/5-x^7/21)│ ...
答:dz / dx = grad (g_x) / grad (g_z) dz / dy = grad (g_y) / grad (g_z) grad (g_x)是g对x 的偏倒。其他同理。 x^2 + y^2 + z^2 == 16 && x^2 + y ^2 + z == 16 ==> z == 0 || z== 1. 由面之外可知 z