python机器学习库sklearn——数据预处理
发布时间:2018-04-07 22:01,
浏览次数:629
, 标签:
python
sklearn
全栈工程师开发手册 (作者:栾鹏)
python数据挖掘系列教程
主要操作内容
* 标准化,也称去均值和方差按比例缩放
* 将特征缩放至特定范围内
* 缩放稀疏(矩阵)数据
* 缩放有离群值的数据
* 核矩阵的中心化
* 非线性转换
* 归一化
* 二值化
* 特征二值化
* 标称特征编码
* 缺失值插补
* 生成多项式特征
直接上代码,大家可以运行代码,打印输出各种结果来理解预处理的处理过程。
from sklearn import preprocessing import numpy as np X_train = np.array([[ 1.,
-1., -2.], [ 2., 0., 0.], [ 3., 1., -1.]]) X_test = [[-1., 1., 0.]] #
===============标准化==================== # 计算数据集的尺度(也就是数据集的均值和方差)(各列) scaler =
preprocessing.StandardScaler().fit(X_train) # 计算均值和方差print('均值:',scaler.mean_ )
print('方差:',scaler.scale_ ) # 通过尺度去处理另一个数据集,当然另一个数据集仍然可以是自己。 X_scaled =
scaler.transform(X_train)print('均值:',X_scaled.mean(axis=0)) #
transform会转化数据集为均值为0 print('方差:',X_scaled.std(axis=0)) # transform会转化数据集为方差为1 #
上面两步的综合:缩放样本,是样本均值为0,方差为1(各列) X_scaled = preprocessing.scale(X_train,axis=0) #
标准化:去均值和方差print('均值:',X_scaled.mean(axis=0)) print('方差:',X_scaled.std(axis=0))
# =====================特征缩放==================== # MinMaxScaler将特征缩放至特定范围内(默认为0-1
) min_max_scaler = preprocessing.MinMaxScaler() X_train_minmax =
min_max_scaler.fit_transform(X_train) # 训练同时转换print('每列最大值:'
,X_train_minmax.max(axis=0)) # 每列最大值为1 print('每列最小值:',X_train_minmax.min(axis=0
)) # 每列最小值为0 # 缩放对象是记录了,平移距离和缩放大小,再对数据进行的操作 print('先平移:',min_max_scaler.min_)
print('再缩放:',min_max_scaler.scale_) X_test_minmax =
min_max_scaler.transform(X_test) # 转换实例应用到测试数据:实现和训练数据一致的缩放和移位操作: #
MaxAbsScaler通过除以每个特征的最大值将训练数据特征缩放至 [-1, 1] 范围内。可以应用在稀疏矩阵上保留矩阵的稀疏性。 X_train =
np.array([[ 0., -1., 0.], [ 0., 0., 0.2], [ 2., 0., 0]]) max_abs_scaler =
preprocessing.MaxAbsScaler() X_train_maxabs =
max_abs_scaler.fit_transform(X_train)print('每列最大值:',X_train_maxabs.max(axis=0))
# 每列最大值为1 print('每列最小值:',X_train_maxabs.min(axis=0)) # 每列最小值不低于-1 print('缩放比例:'
,max_abs_scaler.scale_) X_test_maxabs = max_abs_scaler.transform(X_test) #
转换实例应用到测试数据:实现和训练数据一致的缩放和移位操作:print('缩放后的矩阵仍然具有稀疏性:\n',X_train_maxabs) #
===================缩放有离群值的数据======================== X_train = np.array([[ 1.,
-11., -2.], [ 2., 2., 0.], [ 13., 1., -11.]]) robust_scale =
preprocessing.RobustScaler() X_train_robust =
robust_scale.fit_transform(X_train) # 训练同时转换print('缩放后的矩阵离群点被处理了:\n'
,X_train_maxabs) # ===================非线性转换=================== X_train =
np.array([[ 1., -1., -2.], [ 2., 0., 0.], [ 3., 1., -1.]]) quantile_transformer
= preprocessing.QuantileTransformer(random_state=0) # 将数据映射到了零到一的均匀分布上(默认是均匀分布)
X_train_trans = quantile_transformer.fit_transform(X_train)
#查看分位数信息,经过转换以后,分位数的信息基本不变print('源分位数情况:',np.percentile(X_train[:, 0], [0, 25,
50, 75, 100])) print('变换后分位数情况:',np.percentile(X_train_trans[:, 0], [0, 25, 50,
75, 100])) # 下面将数据映射到了零到一的正态分布上:输入的中值称为输出的平均值,并且以0为中心。正常输出被剪切,使得输入的最小和最大值分别对应于
1e-7和1-1e-7分位数 quantile_transformer =
preprocessing.QuantileTransformer(output_distribution='normal',random_state=0)
X =[[ 1., -1., 2.], [ 2., 0., 0.], [ 0., 1., -1.]] #
===================样本归一化=================== X_normalized =
preprocessing.normalize(X, norm='l1') # 使用 l1 或 l2 范式。缩放使每个样本(每行)的一范数或二范数为1
print('样本归一化:\n',X_normalized) # 当然仍然可以先通过样本获取转换对象,再用转换对象归一化其他数据 normalizer =
preprocessing.Normalizer().fit(X) # 获取转换对象 normalizer.transform(X) #
转换任何数据,X或测试集 # ===================特征二值化=================== binarizer =
preprocessing.Binarizer().fit(X) # 获取转换模型,生成的门限,默认为0 print(binarizer) #
binarizer = preprocessing.Binarizer(threshold=1) # 自定义转换器。门限以上为1,门限(包含)以下为0
X_normalized = binarizer.transform(X) # 转换任何数据,X或测试集print('特征二值化:\n'
,X_normalized) # ===================标称特征编码(one-hot编码)=================== from
sklearn.preprocessing import OneHotEncoder enc = OneHotEncoder() enc.fit([[0,
1, 2], # 每列一个属性,每个属性一种编码 [1, 0, 0], [0, 2, 1], [1, 0, 1]]) print('取值范围整数个数:'
,enc.n_values_) # 每个属性的最大可取值数目。2,3,3 print('编码后:',enc.transform([[0, 1, 1]]
).toarray()) # 转换目标对象。根据可取值所占位数进行罗列。前2位为第一个数字one-hot编码,紧接着的3位为第二个数字的编码,最后3
位为第三个数字的编码print('特征开始位置的索引:',enc.feature_indices_) # 对
n_values_的累积值,代表一个样本转换为编码后的每个属性的开始位置。0,2,5,8 #
===================缺失值插补=================== from sklearn.preprocessing import
Imputer imp = Imputer(missing_values='NaN', strategy='mean', axis=0) #
missing_values参数设定的值被认为是缺失值,计算均值时忽略不计 imp.fit([[1, 2], # 计算每列的非空值的均值 [np.nan,
3], [7, 6]]) X = [[np.nan, 2], [6, np.nan], [7, 6]] print('缺失值插值后:\n'
,imp.transform(X)) # 使用每个的均值为每列缺失值插补 #
===================生成多项式特征=================== from sklearn.preprocessing import
PolynomialFeatures X = np.array([[0, 1], [2, 3], [4, 5]]) poly =
PolynomialFeatures(2,interaction_only=False) #
最大二次方。interaction_only参数设置为True,则会只保留交互项print('生成多项式:\n',poly.fit_transform(X))
# 从 (X_1, X_2) 转换为 (1, X_1, X_2, X_1^2, X_1X_2, X_2^2)