含有一个量词的命题的否命题_这样的否命题题型,你真的做对了吗?

本文通过具体例子解析了数学中“若p则q”类型命题的否定形式,强调了正确理解和应用逻辑关系的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,这里是羊爸爸数学课堂,专注分享初高中数学解题技巧与资料!

4deeacb9f3a04edb7828a5f064ab5b20.png

思考背景

​课堂上出现了这么一道题:

命题:若xy=0则x=0或y=0,写出该命题的否定


f3e19c62633362a0ba6912adbae8cf5a.png

很多学生和老师看到这道题,立马就想到这样的方法:

若p则q的否命题为若非p则非q;

若p则q命题的否定为若p则非q。

按照这样原则问题的答案为:若xy=0,则x≠0且y≠0

这样写显然是正确答案,也就是说我们前面的方法是对的。


进入正题

dd8114bc5a95864caf2d345cd44e7ab1.png

但是,别急,看下面的这道题:

写出若x²=9则x=3的命题的否定。

先分析这个命题是真还是假,显然此命题为假命题!

那么该命题的否定如何写,答案是:若x²=9则x≠3吗?

明显错了,为什么?

因为x≠3,x=-3也可以!所以此命题也是个假命题!

那我们如何去改写这道命题?

首先我们要了解原命题与否命题以及命题的否定之间的逻辑关系!

原命题:若p则q

否命题:若非p则非q(原命题为真,它可能为真也可能为假,不能确定)

命题的否定:若p则非q(原命题和它的关系一定是你真我假的关系)

所以我们做这样的题一定要有你真我假的思想指导你。

那么具体怎么做?请看:

原命题:对于任意的x,x²=9,则x=3(原命题里面缺乏了一个任意的这个东西)假命题

命题的否定:存在一个x,使得x²=9,则x≠3(这样改写后那么就对了) 真命题

总结

76551b3df13dcad8564b5cba5010029f.png

1.运用好若p则q命题的否定为若p则非q;

2.用完后看原命题与命题的否定是否存在你真我假的关系(是就对了,不是就要下一步操作);

3.把里面含有的任意和存在量词补充起来,然后同时对量词进行改变;

4.最终一定要确定原命题与命题的否定是否存在你真我假的关系。

以上就是若p则q的命题否定正确做题的逻辑,你会了吗?

想了解更多精彩内容,快来关注羊爸爸数学课堂

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值