由极市、机器之心和中科创达联合举办的“2018计算机视觉最具潜力开发者榜单”评选活动,现已接受报名,杨强教授、俞扬教授等大牛嘉宾亲自评审,高通、中科创达、微众银行等大力支持,丰厚奖励,丰富资源,千万渠道,助力您的计算机视觉工程化能力认证,提升个人价值及算法变现。极市与您一起定义自己,发现未来~点击阅读原文即可报名~
highD数据集
基于场景的安全验证对于高度自动化的交通工具来说是非常重要的,并受到了学界和业界广泛的关注。但这一任务的难点在于为获取用于测试的必要场景信息,必须依赖于真实场景的数据。质量足够好的数据集中应该包含道路使用者的自然行为以及与所识别的场景的描述相关的所有数据。然而,目前的测量方法并不能满足要求。
近日,德国亚琛工业大学汽车工程研究所提出了一种从空中角度测量车辆数据的新方法,用于满足上述要求的基于场景的验证。同时研究人员提供了一个德国高速公路的大型自然车辆轨迹数据集——highD。这个包含了来自6个地点、11.5小时测量值、110 000车辆的数据集,所测量的车辆总行驶里程为45 000 km,还包括了5600条完整的变道记录。他们根据数量、种类和所包含的情景来对数据集进行了评估。通过使用最先进的计算机视觉算法,定位误差通常小于十厘米。
通过使用配备相机的无人机,以鸟瞰视角测量每辆车的位置和运动情况。 能够无遮挡、并可以以较高的分辨率来捕获车辆纵向和横向尺寸信息,车辆高度方面的信息不能通过俯视图直接获得,可以依照车辆的种类给出相应的预测。

highD数据集中将高速路的驾驶

德国亚琛工业大学提出了一种使用无人机从空中测量车辆数据的新方法,创建了大型自然车辆轨迹数据集highD。该数据集包含6个地点、11.5小时的测量值,覆盖45 000 km行驶里程,用于高度自动化交通工具的安全验证。highD数据集相比NGSIM等现有数据集,拥有更高的数据质量和数量,特别适合交通监测和无人驾驶行为研究。数据集官网及处理代码可在指定链接获取。
最低0.47元/天 解锁文章
617

被折叠的 条评论
为什么被折叠?



