matlab计算auc,ROC和AUC介绍以及如何计算AUC

本文介绍了ROC曲线和AUC在评价二值分类器性能中的应用,并详细阐述了如何使用MATLAB计算AUC。ROC曲线通过FPR和TPR展示了分类器的表现,AUC值越大,分类器性能越好。通过改变分类器的阈值,可以得到不同点的FPR和TPR,进而绘制ROC曲线。利用评分或概率输出,可以根据样本排序计算AUC。
摘要由CSDN通过智能技术生成

ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC。

ROC曲线

需要提前说明的是,我们这里只讨论二值分类器。对于分类器,或者说分类算法,评价指标主要有precision,recall,F-score

ced36657de86c33ffc36daa1cb8e647f.png

正如我们在这个ROC曲线的示例图中看到的那样,ROC曲线的横坐标为false positive rate(FPR),纵坐标为true positive rate(TPR)。下图中详细说明了FPR和TPR是如何定义的。

416c3ea5496bac8227cbd04d2edcfcc0.png

接下来我们考虑ROC曲线图中的四个点和一条线。第一个点,(0,1),即FPR=0, TPR=1,这意味着FN(false negative)=0,并且FP(false positive)=0。Wow,这是一个完美的分类器,它将所有的样本都正确分类。第二个点,(1,0),即FPR=1ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值