在数学唯物主义理论体系中,无限循环小数不是有理数,而是无理数。
无理数最重要的特征,是它不能化为p/q型的分数。
我们用反证法,来证明所有的无限循环小数都必定是无理数。
为了方便,我们以最简单的无限循环小数0.999…为例。
根据数学归纳法,有
0.9< 1
0.99 < 1
0.999 < 1
0.9999 < 1
0.99999 < 1
……
0.9999… < 1
实际上,不必运用数学归纳法,仅仅根据小学生耳熟能详的小数比较法——当两个数的整数位不同时,整数位数值较大的那个数大:
1.00000000……
0.99999999……
两个数的整数位分别是1和0,由于 1 > 0,立即可以得出 0.999… < 1 这个明显的结论。
为了方便,我们称“0.999… < 1”这个结论为“部分小于整体”。
假设 无限循环小数 0.999… 是有理数,按有理数的定义,则它应该可以化为 p/q 的形式(p、q是整数)
即 0.999… = p/q
p= 0.999…q
10p= 9.999…q
10p= 9q + 0.999…q
10p= 9q + p
所以,p/q =1
即 0.999… = 1
这一结论相当于“部分等于整体”,与前面所得“部分小于整体”的结论相矛盾,说明假设错误,0.999…不能化为p/q的形式,即0.999…不是有理数,只能是无理数。
以此类推,形如0.333…、0.212121…、0.356356356… 之类的所有无限循环小数都是无理数。