python无限循环小数是有理数吗_证明:所有无限循环小数都是无理数

在数学唯物主义理论体系中,无限循环小数不是有理数,而是无理数。

无理数最重要的特征,是它不能化为p/q型的分数。

我们用反证法,来证明所有的无限循环小数都必定是无理数。

为了方便,我们以最简单的无限循环小数0.999…为例。

根据数学归纳法,有

0.9< 1

0.99 < 1

0.999 < 1

0.9999 < 1

0.99999 < 1

……

0.9999… < 1

实际上,不必运用数学归纳法,仅仅根据小学生耳熟能详的小数比较法——当两个数的整数位不同时,整数位数值较大的那个数大:

1.00000000……

0.99999999……

两个数的整数位分别是1和0,由于 1 > 0,立即可以得出 0.999… < 1 这个明显的结论。

为了方便,我们称“0.999… < 1”这个结论为“部分小于整体”。

假设 无限循环小数 0.999… 是有理数,按有理数的定义,则它应该可以化为 p/q 的形式(p、q是整数)

即 0.999… = p/q

p= 0.999…q

10p= 9.999…q

10p= 9q + 0.999…q

10p= 9q + p

所以,p/q =1

即 0.999… = 1

这一结论相当于“部分等于整体”,与前面所得“部分小于整体”的结论相矛盾,说明假设错误,0.999…不能化为p/q的形式,即0.999…不是有理数,只能是无理数。

以此类推,形如0.333…、0.212121…、0.356356356… 之类的所有无限循环小数都是无理数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值