图注意力网络_【图神经网络】向往的GAT(图注意力模型)

本文介绍了图注意力网络(GRAPH ATTENTION NETWORKS)的诞生背景,深入解析了其基本概念,并探讨了全球图注意力和掩码图注意力机制,最后分享了对GAT深入的理解。
摘要由CSDN通过智能技术生成

点击上方,选择星标置顶,每天给你送干货e2e98c3468cd8ba08851a667aec9bd38.png

阅读大概需要9分钟85e63b537ee3037c506ab2e75677b9a6.png

跟随小博主,每天进步一丢丢f116c062956d61616160e9979b4ed8c3.png

5e8b0d5a2dcf4bf284bd8aa7199402c2.png 作者丨superbrother 专栏 | 精通GCN全攻略 整理 | 机器学习算法与自然语言处理 https://zhuanlan.zhihu.com/c_1131513793020334080

0 GRAPH ATTENTION NETWORKS的诞生

随着GCN的大红大紫(可以参考如何理解 Graph Convolutional Network(GCN)?),graph领域的deep learning研究可谓变得风生水起,人工智能又出现了新的网红。GCN在一系列任务取得了突破性进展的同时,一系列的缺点也逐渐被放大。 深度学习三巨头”之一的Yoshua Bengio组提出了Graph Attention Networks(下述简称为GAT)去解决GCN存在的问题并且在不少的任务上都取得了state of art的效果(可以参考机器之心:深入理解图注意力机制的复现结果),是graph neural network领域值得关注的工作。

1 聊点基础

登堂入室之前,先介绍三点基础问题。 1.1 Graph数据结构的两种“特征” 当我们说起graph或者network的数据结构,通常是包含着顶点和边的关系。研究目标聚焦在顶点之上,边诉说着顶点之间的关系。 对于任意一个顶点  00c61a97dcae382359a50a611afbbcb4.png  ,它在图上邻居  ddfe523d-5740-eb11-8da9-e4434bdf6706.svg  ,构成第一种特征,即图的结构关系。
1db5e88238abd9235fdd94a8a083d796.png 图1 graph示意图
当然,除了图的结构之外,每个顶点还有自己的特征 919d19a6afad21985e6df9e16599550b.png(通常是一个高维向量)。 它可以使社交网络中每个用户的个体属性;可以是生物网络中,每个蛋白质的性质;还可以使交通路网中,每个交叉口的车流量。 graph上的deep learning方法无外乎就是希望学习上面的两种特征。 1.2 GCN的局限性 GCN是处理transductive任务的一把利器(transductive任务是指:训练阶段与测试阶段都基于同样的图结构),然而GCN有两大局限性是经常被诟病的: (a)无法完成inductive任务,即处理动态图问题。 inductive任务是指:训练阶段与测试阶段需要处理的graph不同。通常是训练阶段只是在子图(subgraph)上进行,测试阶段需要处理未知的顶点。(unseen node) (b)处理有向图的瓶颈,不容易实现分配不同的学习权重给不同的neighbor。 这一点在前面的文章中已经讲过了,不再赘述,如有需要可以参考下面的链接。

https://zhuanlan.zhihu.com/p/72373094

1.3 Mask graph attention or global graph attention 还有一件事件需要提前说清楚: GAT本质上可以有两种运算方式的,这也是原文中作者提到的
  • Global graph attention

顾名思义,就是每一个顶点  85fe81fe9660cc684543570fca847b91.png  都对于图上任意顶点都进行attention运算。 可以理解为图1的蓝色顶点对于其余全部顶点进行一遍运算。 优点: 完全不依赖于图的结构,对于inductive任务无压力 缺点: (1)丢掉了图结构的这个特征,无异于自废武功,效果可能会很差(2)运算面临着高昂的成本
  • Mask graph attention

注意力机制的运算只在邻居顶点上进行,也就是说图1的蓝色顶点只计算和橙色顶点的注意力系数。 作者在原文中GAT ARCHITECTURE这一节中写道"We inject the graph structure into the mechanism by performing masked attention—we only compute eij for nodes j ∈Ni, whereNi is some neighborhood of node i in the graph. " 显然作者在文中采用的是masked attention,DGL里实现的也是如此,以下的解读均基于这种方式。

2 GAT并不难懂

和所有的attention mechanism一样,GAT的计算也分为两步走: 2.1 计算注意力系数(attention coefficient) 对于顶点  85fe81fe9660cc684543570fca847b91.png  ,逐个计算它的邻居们(  e6fe523d-5740-eb11-8da9-e4434bdf6706.svg  )和它自己之间的相似系数 e7fe523d-5740-eb11-8da9-e4434bdf6706.svg 解读一下这个公式: 首先一个共享参数 34fadfaaf8755503775f2e1e3b5a2334.png 的线性映射对于顶点的特征进行了增维,当然这是一种常见的特征增强(feature augment)方法; 4b0e2b138b79d592d1e2523de501e06b.png 对于顶点  eefe523d-5740-eb11-8da9-e4434bdf6706.svg  的变换后的特征进行了拼接(concatenate); 最后  ca5e9128072b9106883cf2a049657638.png  把拼接后的高维特征映射到一个实数上,作者是通过 single-layer feedforward neural network实现的。 显然学习顶点  c99f864c8c6562be5ecc06d026011f5f.png 之间的相关性,就是通过可学习的参数  b9db42298d33f4c5a1899bc253817b72.png  和映射  f3fe523d-5740-eb11-8da9-e4434bdf6706.svg  完成的。 有了相关系数,离注意力系数就差归一化了!其实就是用个softmax 5256fc4b55f32666d049e62739cdfe66.png 要注意这里作者用了个  f5fe523d-5740-eb11-8da9-e4434bdf6706.svg  ,至于原因嘛,估计是试出来的,毕竟深度玄学。 上面的步骤可以参考图2进行理解
91035cda3cf452e5af32121ef456be0b.png 图2 第一步运算示意图
2.2 加权求和(aggregate) 完成第一步,已经成功一大半了。 第二步很简单,根据计算好的注意力系数,把特征加权求和(aggregate)一下。 f7fe523d-5740-eb11-8da9-e4434bdf6706.svg dad253bc9a29d81b904b74cbfba6a33e.png  就是GAT输出的对于每个顶点  70526724aa10e361b9350234b5c9fb87.png 的新特征(融合了邻域信息),  是激活函数。 式(3)看着还有点单薄,俗话说一个篱笆三个桩,attention得靠multi-head帮! 来进化增强一下 b466ed132436f9884e893f52b1630564.png 嗯,这次看起来就很健壮了,multi-head attention也可以理解成用了ensemble的方法,毕竟convolution也得靠大量的卷积核才能大显神威! 上面的步骤可以参考图3进行理解
df21eeebd220e5224693557e25b9ae27.png 图3 第二步运算示意图

3 谈几点深入的理解

3.1 与GCN的联系与区别 无独有偶,我们可以发现本质上而言: GCN与GAT都是将邻居顶点的特征聚合到中心顶点上(一种aggregate运算),利用graph上的local stationary学习新的顶点特征表达。不同的是GCN利用了拉普拉斯矩阵,GAT利用attention系数。一定程度上而言,GAT会更强,因为 顶点特征之间的相关性被更好地融入到模型中。 3.2 为什么GAT适用于有向图? 我认为最根本的原因是GAT的运算方式是逐顶点的运算(node-wise),这一点可从公式(1)—公式(3)中很明显地看出。每一次运算都需要循环遍历图上的所有顶点来完成。逐顶点运算意味着,摆脱了拉普利矩阵的束缚,使得有向图问题迎刃而解。 3.3为什么GAT适用于inductive任务? GAT中重要的学习参数是 a658a78efc559610fc6261e34dc8f97b.png与 8bf34d0fc07c72550453c62f25e7b47f.png,因为上述的逐顶点运算方式,这两个参数仅与1.1节阐述的顶点特征相关,与图的结构毫无关系。所以测试任务中改变图的结构,对于GAT影响并不大,只需要改变 ddfe523d-5740-eb11-8da9-e4434bdf6706.svg ,重新计算即可。 与此相反的是,GCN是一种全图的计算方式,一次计算就更新全图的节点特征。学习的参数很大程度与图结构相关,这使得GCN在inductive任务上遇到困境。
方便交流学习,备注: 昵称-学校(公司)-方向,进入DL&NLP交流群。 方向有很多: 机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。 76249f7551c6d41964ac58af0e61b1c8.png 记得备注呦 推荐阅读: 【ACL 2019】腾讯AI Lab解读三大前沿方向及20篇入选论文 【一分钟论文】IJCAI2019 | Self-attentive Biaffine Dependency  Parsing 【一分钟论文】 NAACL2019-使用感知句法词表示的句法增强神经机器翻译 【一分钟论文】Semi-supervised Sequence Learning半监督序列学习 【一分钟论文】Deep Biaffine Attention for Neural Dependency Parsing 详解Transition-based Dependency parser基于转移的依存句法解析器 经验 | 初入NLP领域的一些小建议 学术 | 如何写一篇合格的NLP论文 干货 | 那些高产的学者都是怎样工作的? 一个简单有效的联合模型 近年来NLP在法律领域的相关研究工作
54bc146206dadc8b6e74633b917aa00c.png 让更多的人知道你“在看” e9c99543a0b6c6b1b9cc34e4fad4e216.gif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值